This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join of two Hilbert space subsets (not necessarily closed subspaces) equals the join of their closures (double orthocomplements). (Contributed by NM, 1-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sshjococ.1 | ⊢ 𝐴 ⊆ ℋ | |
| sshjococ.2 | ⊢ 𝐵 ⊆ ℋ | ||
| Assertion | sshhococi | ⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sshjococ.1 | ⊢ 𝐴 ⊆ ℋ | |
| 2 | sshjococ.2 | ⊢ 𝐵 ⊆ ℋ | |
| 3 | ococss | ⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) | |
| 4 | 1 3 | ax-mp | ⊢ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) |
| 5 | ococss | ⊢ ( 𝐵 ⊆ ℋ → 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) | |
| 6 | 2 5 | ax-mp | ⊢ 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) |
| 7 | unss12 | ⊢ ( ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∧ 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) | |
| 8 | 4 6 7 | mp2an | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| 9 | 1 2 | unssi | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ |
| 10 | occl | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) | |
| 11 | 1 10 | ax-mp | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 12 | 11 | choccli | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ |
| 13 | 12 | chssii | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ℋ |
| 14 | occl | ⊢ ( 𝐵 ⊆ ℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) | |
| 15 | 2 14 | ax-mp | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 16 | 15 | choccli | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 17 | 16 | chssii | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ℋ |
| 18 | 13 17 | unssi | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ℋ |
| 19 | 9 18 | occon2i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
| 20 | 8 19 | ax-mp | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 21 | sshjval | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 22 | 1 2 21 | mp2an | ⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 23 | 12 16 | chjvali | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 24 | 20 22 23 | 3sstr4i | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| 25 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 26 | ococss | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ → ( 𝐴 ∪ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 27 | 9 26 | ax-mp | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 28 | 25 27 | sstri | ⊢ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 29 | 28 22 | sseqtrri | ⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 30 | sshjcl | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) | |
| 31 | 1 2 30 | mp2an | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
| 32 | 31 | chssii | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ℋ |
| 33 | 1 32 | occon2i | ⊢ ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 34 | 29 33 | ax-mp | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 35 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 36 | 35 27 | sstri | ⊢ 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 37 | 36 22 | sseqtrri | ⊢ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 38 | 2 32 | occon2i | ⊢ ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 39 | 37 38 | ax-mp | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 40 | 31 | choccli | ⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∈ Cℋ |
| 41 | 40 | choccli | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ∈ Cℋ |
| 42 | 12 16 41 | chlubii | ⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 43 | 34 39 42 | mp2an | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 44 | 31 | ococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) |
| 45 | 43 44 | sseqtri | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 46 | 24 45 | eqssi | ⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |