This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join of two Hilbert space subsets (not necessarily closed subspaces) equals the join of their closures (double orthocomplements). (Contributed by NM, 1-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sshjococ.1 | |- A C_ ~H |
|
| sshjococ.2 | |- B C_ ~H |
||
| Assertion | sshhococi | |- ( A vH B ) = ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sshjococ.1 | |- A C_ ~H |
|
| 2 | sshjococ.2 | |- B C_ ~H |
|
| 3 | ococss | |- ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
|
| 4 | 1 3 | ax-mp | |- A C_ ( _|_ ` ( _|_ ` A ) ) |
| 5 | ococss | |- ( B C_ ~H -> B C_ ( _|_ ` ( _|_ ` B ) ) ) |
|
| 6 | 2 5 | ax-mp | |- B C_ ( _|_ ` ( _|_ ` B ) ) |
| 7 | unss12 | |- ( ( A C_ ( _|_ ` ( _|_ ` A ) ) /\ B C_ ( _|_ ` ( _|_ ` B ) ) ) -> ( A u. B ) C_ ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) ) |
|
| 8 | 4 6 7 | mp2an | |- ( A u. B ) C_ ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) |
| 9 | 1 2 | unssi | |- ( A u. B ) C_ ~H |
| 10 | occl | |- ( A C_ ~H -> ( _|_ ` A ) e. CH ) |
|
| 11 | 1 10 | ax-mp | |- ( _|_ ` A ) e. CH |
| 12 | 11 | choccli | |- ( _|_ ` ( _|_ ` A ) ) e. CH |
| 13 | 12 | chssii | |- ( _|_ ` ( _|_ ` A ) ) C_ ~H |
| 14 | occl | |- ( B C_ ~H -> ( _|_ ` B ) e. CH ) |
|
| 15 | 2 14 | ax-mp | |- ( _|_ ` B ) e. CH |
| 16 | 15 | choccli | |- ( _|_ ` ( _|_ ` B ) ) e. CH |
| 17 | 16 | chssii | |- ( _|_ ` ( _|_ ` B ) ) C_ ~H |
| 18 | 13 17 | unssi | |- ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) C_ ~H |
| 19 | 9 18 | occon2i | |- ( ( A u. B ) C_ ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) ) ) ) |
| 20 | 8 19 | ax-mp | |- ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) ) ) |
| 21 | sshjval | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
|
| 22 | 1 2 21 | mp2an | |- ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) |
| 23 | 12 16 | chjvali | |- ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) = ( _|_ ` ( _|_ ` ( ( _|_ ` ( _|_ ` A ) ) u. ( _|_ ` ( _|_ ` B ) ) ) ) ) |
| 24 | 20 22 23 | 3sstr4i | |- ( A vH B ) C_ ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) |
| 25 | ssun1 | |- A C_ ( A u. B ) |
|
| 26 | ococss | |- ( ( A u. B ) C_ ~H -> ( A u. B ) C_ ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
|
| 27 | 9 26 | ax-mp | |- ( A u. B ) C_ ( _|_ ` ( _|_ ` ( A u. B ) ) ) |
| 28 | 25 27 | sstri | |- A C_ ( _|_ ` ( _|_ ` ( A u. B ) ) ) |
| 29 | 28 22 | sseqtrri | |- A C_ ( A vH B ) |
| 30 | sshjcl | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) e. CH ) |
|
| 31 | 1 2 30 | mp2an | |- ( A vH B ) e. CH |
| 32 | 31 | chssii | |- ( A vH B ) C_ ~H |
| 33 | 1 32 | occon2i | |- ( A C_ ( A vH B ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) ) |
| 34 | 29 33 | ax-mp | |- ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) |
| 35 | ssun2 | |- B C_ ( A u. B ) |
|
| 36 | 35 27 | sstri | |- B C_ ( _|_ ` ( _|_ ` ( A u. B ) ) ) |
| 37 | 36 22 | sseqtrri | |- B C_ ( A vH B ) |
| 38 | 2 32 | occon2i | |- ( B C_ ( A vH B ) -> ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) ) |
| 39 | 37 38 | ax-mp | |- ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) |
| 40 | 31 | choccli | |- ( _|_ ` ( A vH B ) ) e. CH |
| 41 | 40 | choccli | |- ( _|_ ` ( _|_ ` ( A vH B ) ) ) e. CH |
| 42 | 12 16 41 | chlubii | |- ( ( ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) /\ ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) ) -> ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) ) |
| 43 | 34 39 42 | mp2an | |- ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) C_ ( _|_ ` ( _|_ ` ( A vH B ) ) ) |
| 44 | 31 | ococi | |- ( _|_ ` ( _|_ ` ( A vH B ) ) ) = ( A vH B ) |
| 45 | 43 44 | sseqtri | |- ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) C_ ( A vH B ) |
| 46 | 24 45 | eqssi | |- ( A vH B ) = ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` ( _|_ ` B ) ) ) |