This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021) (Proof shortened by AV, 13-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfzunsn | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( 𝑀 ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 2 | eluzel2 | ⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 3 | 2 | 3ad2ant3 | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℤ ) |
| 4 | simp2 | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℤ ) | |
| 5 | eluzelz | ⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐼 ∈ ℤ ) | |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐼 ∈ ℤ ) |
| 7 | ssfzunsnext | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) | |
| 8 | 1 3 4 6 7 | syl13anc | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| 9 | eluz2 | ⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) ) | |
| 10 | zre | ⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ ) | |
| 11 | 10 | rexrd | ⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ* ) |
| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝐼 ∈ ℝ* ) |
| 13 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 14 | 13 | rexrd | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ* ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 ∈ ℝ* ) |
| 16 | simp3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 ≤ 𝐼 ) | |
| 17 | xrmineq | ⊢ ( ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) = 𝑀 ) | |
| 18 | 12 15 16 17 | syl3anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) = 𝑀 ) |
| 19 | 18 | eqcomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
| 20 | 9 19 | sylbi | ⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
| 21 | 20 | 3ad2ant3 | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
| 22 | 21 | oveq1d | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) = ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| 23 | 8 22 | sseqtrrd | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( 𝑀 ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |