This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021) (Proof shortened by AV, 13-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfzunsn | |- ( ( S C_ ( M ... N ) /\ N e. ZZ /\ I e. ( ZZ>= ` M ) ) -> ( S u. { I } ) C_ ( M ... if ( I <_ N , N , I ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( S C_ ( M ... N ) /\ N e. ZZ /\ I e. ( ZZ>= ` M ) ) -> S C_ ( M ... N ) ) |
|
| 2 | eluzel2 | |- ( I e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 3 | 2 | 3ad2ant3 | |- ( ( S C_ ( M ... N ) /\ N e. ZZ /\ I e. ( ZZ>= ` M ) ) -> M e. ZZ ) |
| 4 | simp2 | |- ( ( S C_ ( M ... N ) /\ N e. ZZ /\ I e. ( ZZ>= ` M ) ) -> N e. ZZ ) |
|
| 5 | eluzelz | |- ( I e. ( ZZ>= ` M ) -> I e. ZZ ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( S C_ ( M ... N ) /\ N e. ZZ /\ I e. ( ZZ>= ` M ) ) -> I e. ZZ ) |
| 7 | ssfzunsnext | |- ( ( S C_ ( M ... N ) /\ ( M e. ZZ /\ N e. ZZ /\ I e. ZZ ) ) -> ( S u. { I } ) C_ ( if ( I <_ M , I , M ) ... if ( I <_ N , N , I ) ) ) |
|
| 8 | 1 3 4 6 7 | syl13anc | |- ( ( S C_ ( M ... N ) /\ N e. ZZ /\ I e. ( ZZ>= ` M ) ) -> ( S u. { I } ) C_ ( if ( I <_ M , I , M ) ... if ( I <_ N , N , I ) ) ) |
| 9 | eluz2 | |- ( I e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ I e. ZZ /\ M <_ I ) ) |
|
| 10 | zre | |- ( I e. ZZ -> I e. RR ) |
|
| 11 | 10 | rexrd | |- ( I e. ZZ -> I e. RR* ) |
| 12 | 11 | 3ad2ant2 | |- ( ( M e. ZZ /\ I e. ZZ /\ M <_ I ) -> I e. RR* ) |
| 13 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 14 | 13 | rexrd | |- ( M e. ZZ -> M e. RR* ) |
| 15 | 14 | 3ad2ant1 | |- ( ( M e. ZZ /\ I e. ZZ /\ M <_ I ) -> M e. RR* ) |
| 16 | simp3 | |- ( ( M e. ZZ /\ I e. ZZ /\ M <_ I ) -> M <_ I ) |
|
| 17 | xrmineq | |- ( ( I e. RR* /\ M e. RR* /\ M <_ I ) -> if ( I <_ M , I , M ) = M ) |
|
| 18 | 12 15 16 17 | syl3anc | |- ( ( M e. ZZ /\ I e. ZZ /\ M <_ I ) -> if ( I <_ M , I , M ) = M ) |
| 19 | 18 | eqcomd | |- ( ( M e. ZZ /\ I e. ZZ /\ M <_ I ) -> M = if ( I <_ M , I , M ) ) |
| 20 | 9 19 | sylbi | |- ( I e. ( ZZ>= ` M ) -> M = if ( I <_ M , I , M ) ) |
| 21 | 20 | 3ad2ant3 | |- ( ( S C_ ( M ... N ) /\ N e. ZZ /\ I e. ( ZZ>= ` M ) ) -> M = if ( I <_ M , I , M ) ) |
| 22 | 21 | oveq1d | |- ( ( S C_ ( M ... N ) /\ N e. ZZ /\ I e. ( ZZ>= ` M ) ) -> ( M ... if ( I <_ N , N , I ) ) = ( if ( I <_ M , I , M ) ... if ( I <_ N , N , I ) ) ) |
| 23 | 8 22 | sseqtrrd | |- ( ( S C_ ( M ... N ) /\ N e. ZZ /\ I e. ( ZZ>= ` M ) ) -> ( S u. { I } ) C_ ( M ... if ( I <_ N , N , I ) ) ) |