This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 13-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfzunsnext | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 2 | simp3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → 𝐼 ∈ ℤ ) | |
| 3 | simp1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 4 | 2 3 | ifcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ∈ ℤ ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ∈ ℤ ) |
| 6 | simp2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 7 | 6 2 | ifcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ∈ ℤ ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ∈ ℤ ) |
| 9 | elfzelz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ℤ ) | |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑘 ∈ ℤ ) |
| 11 | 4 | zred | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ∈ ℝ ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ∈ ℝ ) |
| 13 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℝ ) |
| 16 | 9 | zred | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ℝ ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑘 ∈ ℝ ) |
| 18 | zre | ⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ ) | |
| 19 | 13 18 | anim12i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( 𝑀 ∈ ℝ ∧ 𝐼 ∈ ℝ ) ) |
| 20 | 19 | ancomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 21 | 20 | 3adant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 23 | min2 | ⊢ ( ( 𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ≤ 𝑀 ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ≤ 𝑀 ) |
| 25 | elfzle1 | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ≤ 𝑘 ) | |
| 26 | 25 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ≤ 𝑘 ) |
| 27 | 12 15 17 24 26 | letrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ≤ 𝑘 ) |
| 28 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 29 | 28 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 31 | 7 | zred | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ∈ ℝ ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ∈ ℝ ) |
| 33 | elfzle2 | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ≤ 𝑁 ) | |
| 34 | 33 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑘 ≤ 𝑁 ) |
| 35 | 28 18 | anim12i | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( 𝑁 ∈ ℝ ∧ 𝐼 ∈ ℝ ) ) |
| 36 | 35 | 3adant1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( 𝑁 ∈ ℝ ∧ 𝐼 ∈ ℝ ) ) |
| 37 | 36 | ancomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 38 | max2 | ⊢ ( ( 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑁 ≤ if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → 𝑁 ≤ if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) |
| 40 | 39 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ≤ if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) |
| 41 | 17 30 32 34 40 | letrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑘 ≤ if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) |
| 42 | 5 8 10 27 41 | elfzd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑘 ∈ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| 43 | 42 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) ) |
| 44 | 43 | ssrdv | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) ⊆ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| 45 | 44 | adantl | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → ( 𝑀 ... 𝑁 ) ⊆ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| 46 | 1 45 | sstrd | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → 𝑆 ⊆ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| 47 | 4 | adantl | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ∈ ℤ ) |
| 48 | 7 | adantl | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ∈ ℤ ) |
| 49 | 2 | adantl | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → 𝐼 ∈ ℤ ) |
| 50 | 19 | 3adant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( 𝑀 ∈ ℝ ∧ 𝐼 ∈ ℝ ) ) |
| 51 | 50 | adantl | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → ( 𝑀 ∈ ℝ ∧ 𝐼 ∈ ℝ ) ) |
| 52 | 51 | ancomd | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → ( 𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 53 | min1 | ⊢ ( ( 𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ≤ 𝐼 ) | |
| 54 | 52 53 | syl | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ≤ 𝐼 ) |
| 55 | 36 | adantl | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → ( 𝑁 ∈ ℝ ∧ 𝐼 ∈ ℝ ) ) |
| 56 | 55 | ancomd | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → ( 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 57 | max1 | ⊢ ( ( 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝐼 ≤ if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → 𝐼 ≤ if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) |
| 59 | 47 48 49 54 58 | elfzd | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → 𝐼 ∈ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| 60 | 59 | snssd | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → { 𝐼 } ⊆ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| 61 | 46 60 | unssd | ⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |