This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rescval.1 | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) | |
| Assertion | rescval | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊 ) → 𝐷 = ( ( 𝐶 ↾s dom dom 𝐻 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescval.1 | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) | |
| 2 | elex | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ V ) | |
| 3 | elex | ⊢ ( 𝐻 ∈ 𝑊 → 𝐻 ∈ V ) | |
| 4 | simpl | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → 𝑐 = 𝐶 ) | |
| 5 | simpr | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ℎ = 𝐻 ) | |
| 6 | 5 | dmeqd | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → dom ℎ = dom 𝐻 ) |
| 7 | 6 | dmeqd | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → dom dom ℎ = dom dom 𝐻 ) |
| 8 | 4 7 | oveq12d | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑐 ↾s dom dom ℎ ) = ( 𝐶 ↾s dom dom 𝐻 ) ) |
| 9 | 5 | opeq2d | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → 〈 ( Hom ‘ ndx ) , ℎ 〉 = 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) |
| 10 | 8 9 | oveq12d | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( 𝑐 ↾s dom dom ℎ ) sSet 〈 ( Hom ‘ ndx ) , ℎ 〉 ) = ( ( 𝐶 ↾s dom dom 𝐻 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 11 | df-resc | ⊢ ↾cat = ( 𝑐 ∈ V , ℎ ∈ V ↦ ( ( 𝑐 ↾s dom dom ℎ ) sSet 〈 ( Hom ‘ ndx ) , ℎ 〉 ) ) | |
| 12 | ovex | ⊢ ( ( 𝐶 ↾s dom dom 𝐻 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V | |
| 13 | 10 11 12 | ovmpoa | ⊢ ( ( 𝐶 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐶 ↾cat 𝐻 ) = ( ( 𝐶 ↾s dom dom 𝐻 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 14 | 2 3 13 | syl2an | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊 ) → ( 𝐶 ↾cat 𝐻 ) = ( ( 𝐶 ↾s dom dom 𝐻 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 15 | 1 14 | eqtrid | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊 ) → 𝐷 = ( ( 𝐶 ↾s dom dom 𝐻 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |