This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass of a restricted class abstraction (deduction form). Saves ax-10 , ax-11 , ax-12 over using ss2rab and sylibr . (Contributed by SN, 4-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ss2rabd.1 | |- ( ph -> A. x e. A ( ps -> ch ) ) |
|
| Assertion | ss2rabd | |- ( ph -> { x e. A | ps } C_ { x e. A | ch } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabd.1 | |- ( ph -> A. x e. A ( ps -> ch ) ) |
|
| 2 | df-ral | |- ( A. x e. A ( ps -> ch ) <-> A. x ( x e. A -> ( ps -> ch ) ) ) |
|
| 3 | imdistan | |- ( ( x e. A -> ( ps -> ch ) ) <-> ( ( x e. A /\ ps ) -> ( x e. A /\ ch ) ) ) |
|
| 4 | 3 | albii | |- ( A. x ( x e. A -> ( ps -> ch ) ) <-> A. x ( ( x e. A /\ ps ) -> ( x e. A /\ ch ) ) ) |
| 5 | 2 4 | bitri | |- ( A. x e. A ( ps -> ch ) <-> A. x ( ( x e. A /\ ps ) -> ( x e. A /\ ch ) ) ) |
| 6 | 1 5 | sylib | |- ( ph -> A. x ( ( x e. A /\ ps ) -> ( x e. A /\ ch ) ) ) |
| 7 | ss2abim | |- ( A. x ( ( x e. A /\ ps ) -> ( x e. A /\ ch ) ) -> { x | ( x e. A /\ ps ) } C_ { x | ( x e. A /\ ch ) } ) |
|
| 8 | 6 7 | syl | |- ( ph -> { x | ( x e. A /\ ps ) } C_ { x | ( x e. A /\ ch ) } ) |
| 9 | df-rab | |- { x e. A | ps } = { x | ( x e. A /\ ps ) } |
|
| 10 | df-rab | |- { x e. A | ch } = { x | ( x e. A /\ ch ) } |
|
| 11 | 8 9 10 | 3sstr4g | |- ( ph -> { x e. A | ps } C_ { x e. A | ch } ) |