This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class abstractions in a subclass relationship. Reverse direction of ss2ab which requires fewer axioms. (Contributed by SN, 2-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ss2abim | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbim | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 2 | 1 | alrimiv | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 3 | df-ss | ⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ) | |
| 4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 5 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
| 6 | 4 5 | imbi12i | ⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 8 | 3 7 | bitr2i | ⊢ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } ) |
| 9 | 2 8 | sylib | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } ) |