This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgpcomp.s | ⊢ 𝑆 = ( Base ‘ 𝑅 ) | |
| srgpcomp.m | ⊢ × = ( .r ‘ 𝑅 ) | ||
| srgpcomp.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | ||
| srgpcomp.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| srgpcomp.r | ⊢ ( 𝜑 → 𝑅 ∈ SRing ) | ||
| srgpcomp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| srgpcomp.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
| srgpcomp.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | ||
| srgpcomp.c | ⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) | ||
| srgpcompp.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| srgpcomppsc.t | ⊢ · = ( .g ‘ 𝑅 ) | ||
| srgpcomppsc.c | ⊢ ( 𝜑 → 𝐶 ∈ ℕ0 ) | ||
| Assertion | srgpcomppsc | ⊢ ( 𝜑 → ( ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) × 𝐴 ) = ( 𝐶 · ( ( ( 𝑁 + 1 ) ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgpcomp.s | ⊢ 𝑆 = ( Base ‘ 𝑅 ) | |
| 2 | srgpcomp.m | ⊢ × = ( .r ‘ 𝑅 ) | |
| 3 | srgpcomp.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 4 | srgpcomp.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 5 | srgpcomp.r | ⊢ ( 𝜑 → 𝑅 ∈ SRing ) | |
| 6 | srgpcomp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 7 | srgpcomp.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
| 8 | srgpcomp.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | |
| 9 | srgpcomp.c | ⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) | |
| 10 | srgpcompp.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 11 | srgpcomppsc.t | ⊢ · = ( .g ‘ 𝑅 ) | |
| 12 | srgpcomppsc.c | ⊢ ( 𝜑 → 𝐶 ∈ ℕ0 ) | |
| 13 | 3 1 | mgpbas | ⊢ 𝑆 = ( Base ‘ 𝐺 ) |
| 14 | 3 | srgmgp | ⊢ ( 𝑅 ∈ SRing → 𝐺 ∈ Mnd ) |
| 15 | 5 14 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 16 | 13 4 15 10 6 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ) |
| 17 | 13 4 15 8 7 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ) |
| 18 | 1 11 2 | srgmulgass | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐶 ∈ ℕ0 ∧ ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ∧ ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ) ) → ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( 𝐾 ↑ 𝐵 ) ) = ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) ) |
| 19 | 18 | eqcomd | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐶 ∈ ℕ0 ∧ ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ∧ ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ) ) → ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) = ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( 𝐾 ↑ 𝐵 ) ) ) |
| 20 | 5 12 16 17 19 | syl13anc | ⊢ ( 𝜑 → ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) = ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( 𝐾 ↑ 𝐵 ) ) ) |
| 21 | 20 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) × 𝐴 ) = ( ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) ) |
| 22 | srgmnd | ⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd ) | |
| 23 | 5 22 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 24 | 1 11 23 12 16 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) ∈ 𝑆 ) |
| 25 | 1 2 | srgass | ⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) ∈ 𝑆 ∧ ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) → ( ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) |
| 26 | 5 24 17 6 25 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) |
| 27 | 21 26 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) × 𝐴 ) = ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) |
| 28 | 1 2 | srgcl | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ∈ 𝑆 ) |
| 29 | 5 17 6 28 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ∈ 𝑆 ) |
| 30 | 1 11 2 | srgmulgass | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐶 ∈ ℕ0 ∧ ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ∧ ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ∈ 𝑆 ) ) → ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) = ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) ) |
| 31 | 5 12 16 29 30 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) = ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) ) |
| 32 | 1 2 | srgass | ⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ∧ ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) → ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) |
| 33 | 5 16 17 6 32 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) |
| 34 | 33 | eqcomd | ⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) = ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) ) |
| 35 | 34 | oveq2d | ⊢ ( 𝜑 → ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) = ( 𝐶 · ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) ) ) |
| 36 | 31 35 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) = ( 𝐶 · ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) ) ) |
| 37 | 1 2 3 4 5 6 7 8 9 10 | srgpcompp | ⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( ( 𝑁 + 1 ) ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) |
| 38 | 37 | oveq2d | ⊢ ( 𝜑 → ( 𝐶 · ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) ) = ( 𝐶 · ( ( ( 𝑁 + 1 ) ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) ) |
| 39 | 27 36 38 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) × 𝐴 ) = ( 𝐶 · ( ( ( 𝑁 + 1 ) ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) ) |