This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in Golan p. 1. (Contributed by Thierry Arnoux, 1-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgz.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srgz.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| srgz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| srgisid.1 | ⊢ ( 𝜑 → 𝑅 ∈ SRing ) | ||
| srgisid.2 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| srgisid.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑍 · 𝑥 ) = 𝑍 ) | ||
| Assertion | srgisid | ⊢ ( 𝜑 → 𝑍 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgz.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srgz.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | srgz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | srgisid.1 | ⊢ ( 𝜑 → 𝑅 ∈ SRing ) | |
| 5 | srgisid.2 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 6 | srgisid.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑍 · 𝑥 ) = 𝑍 ) | |
| 7 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝑍 · 𝑥 ) = 𝑍 ) |
| 8 | 1 3 | srg0cl | ⊢ ( 𝑅 ∈ SRing → 0 ∈ 𝐵 ) |
| 9 | oveq2 | ⊢ ( 𝑥 = 0 → ( 𝑍 · 𝑥 ) = ( 𝑍 · 0 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑍 · 𝑥 ) = 𝑍 ↔ ( 𝑍 · 0 ) = 𝑍 ) ) |
| 11 | 10 | rspcv | ⊢ ( 0 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑍 · 𝑥 ) = 𝑍 → ( 𝑍 · 0 ) = 𝑍 ) ) |
| 12 | 4 8 11 | 3syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑍 · 𝑥 ) = 𝑍 → ( 𝑍 · 0 ) = 𝑍 ) ) |
| 13 | 7 12 | mpd | ⊢ ( 𝜑 → ( 𝑍 · 0 ) = 𝑍 ) |
| 14 | 1 2 3 | srgrz | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑍 ∈ 𝐵 ) → ( 𝑍 · 0 ) = 0 ) |
| 15 | 4 5 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑍 · 0 ) = 0 ) |
| 16 | 13 15 | eqtr3d | ⊢ ( 𝜑 → 𝑍 = 0 ) |