This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgz.b | |- B = ( Base ` R ) |
|
| srgz.t | |- .x. = ( .r ` R ) |
||
| srgz.z | |- .0. = ( 0g ` R ) |
||
| Assertion | srglz | |- ( ( R e. SRing /\ X e. B ) -> ( .0. .x. X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgz.b | |- B = ( Base ` R ) |
|
| 2 | srgz.t | |- .x. = ( .r ` R ) |
|
| 3 | srgz.z | |- .0. = ( 0g ` R ) |
|
| 4 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 5 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 6 | 1 4 5 2 3 | issrg | |- ( R e. SRing <-> ( R e. CMnd /\ ( mulGrp ` R ) e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y ( +g ` R ) z ) ) = ( ( x .x. y ) ( +g ` R ) ( x .x. z ) ) /\ ( ( x ( +g ` R ) y ) .x. z ) = ( ( x .x. z ) ( +g ` R ) ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |
| 7 | 6 | simp3bi | |- ( R e. SRing -> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y ( +g ` R ) z ) ) = ( ( x .x. y ) ( +g ` R ) ( x .x. z ) ) /\ ( ( x ( +g ` R ) y ) .x. z ) = ( ( x .x. z ) ( +g ` R ) ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) |
| 8 | 7 | r19.21bi | |- ( ( R e. SRing /\ x e. B ) -> ( A. y e. B A. z e. B ( ( x .x. ( y ( +g ` R ) z ) ) = ( ( x .x. y ) ( +g ` R ) ( x .x. z ) ) /\ ( ( x ( +g ` R ) y ) .x. z ) = ( ( x .x. z ) ( +g ` R ) ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) |
| 9 | 8 | simprld | |- ( ( R e. SRing /\ x e. B ) -> ( .0. .x. x ) = .0. ) |
| 10 | 9 | ralrimiva | |- ( R e. SRing -> A. x e. B ( .0. .x. x ) = .0. ) |
| 11 | oveq2 | |- ( x = X -> ( .0. .x. x ) = ( .0. .x. X ) ) |
|
| 12 | 11 | eqeq1d | |- ( x = X -> ( ( .0. .x. x ) = .0. <-> ( .0. .x. X ) = .0. ) ) |
| 13 | 12 | rspcv | |- ( X e. B -> ( A. x e. B ( .0. .x. x ) = .0. -> ( .0. .x. X ) = .0. ) ) |
| 14 | 10 13 | mpan9 | |- ( ( R e. SRing /\ X e. B ) -> ( .0. .x. X ) = .0. ) |