This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a ring-like structure plus itself is two times the element. "Two" in such a structure is the sum of the unity element with itself. This (formerly) part of the proof for ringcom depends on the (right) distributivity and the existence of a (left) multiplicative identity only. (Contributed by Gérard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o2timesd.e | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) | |
| o2timesd.u | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) | ||
| o2timesd.i | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) | ||
| o2timesd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | o2timesd | ⊢ ( 𝜑 → ( 𝑋 + 𝑋 ) = ( ( 1 + 1 ) · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o2timesd.e | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) | |
| 2 | o2timesd.u | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) | |
| 3 | o2timesd.i | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) | |
| 4 | o2timesd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( 1 · 𝑥 ) = ( 1 · 𝑋 ) ) | |
| 6 | id | ⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 · 𝑋 ) = 𝑋 ) ) |
| 8 | 7 | rspcva | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 9 | 8 | eqcomd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) → 𝑋 = ( 1 · 𝑋 ) ) |
| 10 | 4 3 9 | syl2anc | ⊢ ( 𝜑 → 𝑋 = ( 1 · 𝑋 ) ) |
| 11 | 10 10 | oveq12d | ⊢ ( 𝜑 → ( 𝑋 + 𝑋 ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) ) |
| 12 | 2 2 4 | 3jca | ⊢ ( 𝜑 → ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 13 | oveq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 + 𝑦 ) = ( 1 + 𝑦 ) ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑥 = 1 → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 1 + 𝑦 ) · 𝑧 ) ) |
| 15 | oveq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 · 𝑧 ) = ( 1 · 𝑧 ) ) | |
| 16 | 15 | oveq1d | ⊢ ( 𝑥 = 1 → ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑥 = 1 → ( ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ↔ ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑦 = 1 → ( 1 + 𝑦 ) = ( 1 + 1 ) ) | |
| 19 | 18 | oveq1d | ⊢ ( 𝑦 = 1 → ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 + 1 ) · 𝑧 ) ) |
| 20 | oveq1 | ⊢ ( 𝑦 = 1 → ( 𝑦 · 𝑧 ) = ( 1 · 𝑧 ) ) | |
| 21 | 20 | oveq2d | ⊢ ( 𝑦 = 1 → ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ) |
| 22 | 19 21 | eqeq12d | ⊢ ( 𝑦 = 1 → ( ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ↔ ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ) ) |
| 23 | oveq2 | ⊢ ( 𝑧 = 𝑋 → ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 + 1 ) · 𝑋 ) ) | |
| 24 | oveq2 | ⊢ ( 𝑧 = 𝑋 → ( 1 · 𝑧 ) = ( 1 · 𝑋 ) ) | |
| 25 | 24 24 | oveq12d | ⊢ ( 𝑧 = 𝑋 → ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) ) |
| 26 | 23 25 | eqeq12d | ⊢ ( 𝑧 = 𝑋 → ( ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ↔ ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) ) ) |
| 27 | 17 22 26 | rspc3v | ⊢ ( ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) → ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) ) ) |
| 28 | 12 1 27 | sylc | ⊢ ( 𝜑 → ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) ) |
| 29 | 11 28 | eqtr4d | ⊢ ( 𝜑 → ( 𝑋 + 𝑋 ) = ( ( 1 + 1 ) · 𝑋 ) ) |