This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in Golan p. 1. (Contributed by Thierry Arnoux, 1-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgz.b | |- B = ( Base ` R ) |
|
| srgz.t | |- .x. = ( .r ` R ) |
||
| srgz.z | |- .0. = ( 0g ` R ) |
||
| srgisid.1 | |- ( ph -> R e. SRing ) |
||
| srgisid.2 | |- ( ph -> Z e. B ) |
||
| srgisid.3 | |- ( ( ph /\ x e. B ) -> ( Z .x. x ) = Z ) |
||
| Assertion | srgisid | |- ( ph -> Z = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgz.b | |- B = ( Base ` R ) |
|
| 2 | srgz.t | |- .x. = ( .r ` R ) |
|
| 3 | srgz.z | |- .0. = ( 0g ` R ) |
|
| 4 | srgisid.1 | |- ( ph -> R e. SRing ) |
|
| 5 | srgisid.2 | |- ( ph -> Z e. B ) |
|
| 6 | srgisid.3 | |- ( ( ph /\ x e. B ) -> ( Z .x. x ) = Z ) |
|
| 7 | 6 | ralrimiva | |- ( ph -> A. x e. B ( Z .x. x ) = Z ) |
| 8 | 1 3 | srg0cl | |- ( R e. SRing -> .0. e. B ) |
| 9 | oveq2 | |- ( x = .0. -> ( Z .x. x ) = ( Z .x. .0. ) ) |
|
| 10 | 9 | eqeq1d | |- ( x = .0. -> ( ( Z .x. x ) = Z <-> ( Z .x. .0. ) = Z ) ) |
| 11 | 10 | rspcv | |- ( .0. e. B -> ( A. x e. B ( Z .x. x ) = Z -> ( Z .x. .0. ) = Z ) ) |
| 12 | 4 8 11 | 3syl | |- ( ph -> ( A. x e. B ( Z .x. x ) = Z -> ( Z .x. .0. ) = Z ) ) |
| 13 | 7 12 | mpd | |- ( ph -> ( Z .x. .0. ) = Z ) |
| 14 | 1 2 3 | srgrz | |- ( ( R e. SRing /\ Z e. B ) -> ( Z .x. .0. ) = .0. ) |
| 15 | 4 5 14 | syl2anc | |- ( ph -> ( Z .x. .0. ) = .0. ) |
| 16 | 13 15 | eqtr3d | |- ( ph -> Z = .0. ) |