This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The slot for the scalar is not the index of other slots. Formerly part of proof for srasca and sravsca . (Contributed by AV, 12-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | slotsdifipndx | ⊢ ( ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ∧ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6re | ⊢ 6 ∈ ℝ | |
| 2 | 6lt8 | ⊢ 6 < 8 | |
| 3 | 1 2 | ltneii | ⊢ 6 ≠ 8 |
| 4 | vscandx | ⊢ ( ·𝑠 ‘ ndx ) = 6 | |
| 5 | ipndx | ⊢ ( ·𝑖 ‘ ndx ) = 8 | |
| 6 | 4 5 | neeq12i | ⊢ ( ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 6 ≠ 8 ) |
| 7 | 3 6 | mpbir | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
| 8 | 5re | ⊢ 5 ∈ ℝ | |
| 9 | 5lt8 | ⊢ 5 < 8 | |
| 10 | 8 9 | ltneii | ⊢ 5 ≠ 8 |
| 11 | scandx | ⊢ ( Scalar ‘ ndx ) = 5 | |
| 12 | 11 5 | neeq12i | ⊢ ( ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 5 ≠ 8 ) |
| 13 | 10 12 | mpbir | ⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
| 14 | 7 13 | pm3.2i | ⊢ ( ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ∧ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) |