This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is even iff its square is even. (Contributed by NM, 20-Aug-2001) (Revised by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnesq | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ ↔ ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 2 | zesq | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) ∈ ℤ ↔ ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℤ ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℤ ↔ ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℤ ) ) |
| 4 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 5 | 4 | rphalfcld | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℝ+ ) |
| 6 | 5 | rpgt0d | ⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 / 2 ) ) |
| 7 | nnsqcl | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℕ ) | |
| 8 | 7 | nnrpd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℝ+ ) |
| 9 | 8 | rphalfcld | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℝ+ ) |
| 10 | 9 | rpgt0d | ⊢ ( 𝑁 ∈ ℕ → 0 < ( ( 𝑁 ↑ 2 ) / 2 ) ) |
| 11 | 6 10 | 2thd | ⊢ ( 𝑁 ∈ ℕ → ( 0 < ( 𝑁 / 2 ) ↔ 0 < ( ( 𝑁 ↑ 2 ) / 2 ) ) ) |
| 12 | 3 11 | anbi12d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 < ( 𝑁 / 2 ) ) ↔ ( ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝑁 ↑ 2 ) / 2 ) ) ) ) |
| 13 | elnnz | ⊢ ( ( 𝑁 / 2 ) ∈ ℕ ↔ ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 < ( 𝑁 / 2 ) ) ) | |
| 14 | elnnz | ⊢ ( ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℕ ↔ ( ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝑁 ↑ 2 ) / 2 ) ) ) | |
| 15 | 12 13 14 | 3bitr4g | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ ↔ ( ( 𝑁 ↑ 2 ) / 2 ) ∈ ℕ ) ) |