This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008) Avoid ax-10 and ax-11 . (Revised by GG, 20-Aug-2023) (Proof shortened by Wolf Lammen, 25-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | spc3egv.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | spc3egv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc3egv.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 3 | elex | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) | |
| 4 | elex | ⊢ ( 𝐶 ∈ 𝑋 → 𝐶 ∈ V ) | |
| 5 | simp1 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → 𝐴 ∈ V ) | |
| 6 | 1 | 3coml | ⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝑥 = 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝑥 = 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 8 | 7 | pm5.74da | ⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 9 | 8 | spc2egv | ⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ( 𝑥 = 𝐴 → 𝜓 ) → ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 10 | 19.37v | ⊢ ( ∃ 𝑧 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → ∃ 𝑧 𝜑 ) ) | |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 = 𝐴 → ∃ 𝑧 𝜑 ) ) |
| 12 | 19.37v | ⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 → ∃ 𝑧 𝜑 ) ↔ ( 𝑥 = 𝐴 → ∃ 𝑦 ∃ 𝑧 𝜑 ) ) | |
| 13 | 11 12 | bitri | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → ∃ 𝑦 ∃ 𝑧 𝜑 ) ) |
| 14 | 9 13 | imbitrdi | ⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ( 𝑥 = 𝐴 → 𝜓 ) → ( 𝑥 = 𝐴 → ∃ 𝑦 ∃ 𝑧 𝜑 ) ) ) |
| 15 | 14 | pm2.86d | ⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝑥 = 𝐴 → ( 𝜓 → ∃ 𝑦 ∃ 𝑧 𝜑 ) ) ) |
| 16 | 15 | 3adant1 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝑥 = 𝐴 → ( 𝜓 → ∃ 𝑦 ∃ 𝑧 𝜑 ) ) ) |
| 17 | 16 | imp | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ∧ 𝑥 = 𝐴 ) → ( 𝜓 → ∃ 𝑦 ∃ 𝑧 𝜑 ) ) |
| 18 | 5 17 | spcimedv | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜑 ) ) |
| 19 | 2 3 4 18 | syl3an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜑 ) ) |