This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | spc3egv.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | spc3gv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc3egv.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | notbid | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 3 | 2 | spc3egv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ¬ 𝜓 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ) ) |
| 4 | exnal | ⊢ ( ∃ 𝑧 ¬ 𝜑 ↔ ¬ ∀ 𝑧 𝜑 ) | |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ↔ ∃ 𝑦 ¬ ∀ 𝑧 𝜑 ) |
| 6 | exnal | ⊢ ( ∃ 𝑦 ¬ ∀ 𝑧 𝜑 ↔ ¬ ∀ 𝑦 ∀ 𝑧 𝜑 ) | |
| 7 | 5 6 | bitri | ⊢ ( ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∀ 𝑧 𝜑 ) |
| 8 | 7 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ↔ ∃ 𝑥 ¬ ∀ 𝑦 ∀ 𝑧 𝜑 ) |
| 9 | exnal | ⊢ ( ∃ 𝑥 ¬ ∀ 𝑦 ∀ 𝑧 𝜑 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ) | |
| 10 | 8 9 | bitr2i | ⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ) |
| 11 | 3 10 | imbitrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ¬ 𝜓 → ¬ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ) ) |
| 12 | 11 | con4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 → 𝜓 ) ) |