This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008) Avoid ax-10 and ax-11 . (Revised by GG, 20-Aug-2023) (Proof shortened by Wolf Lammen, 25-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | spc3egv.1 | |- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
|
| Assertion | spc3egv | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ps -> E. x E. y E. z ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc3egv.1 | |- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
|
| 2 | elex | |- ( A e. V -> A e. _V ) |
|
| 3 | elex | |- ( B e. W -> B e. _V ) |
|
| 4 | elex | |- ( C e. X -> C e. _V ) |
|
| 5 | simp1 | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> A e. _V ) |
|
| 6 | 1 | 3coml | |- ( ( y = B /\ z = C /\ x = A ) -> ( ph <-> ps ) ) |
| 7 | 6 | 3expa | |- ( ( ( y = B /\ z = C ) /\ x = A ) -> ( ph <-> ps ) ) |
| 8 | 7 | pm5.74da | |- ( ( y = B /\ z = C ) -> ( ( x = A -> ph ) <-> ( x = A -> ps ) ) ) |
| 9 | 8 | spc2egv | |- ( ( B e. _V /\ C e. _V ) -> ( ( x = A -> ps ) -> E. y E. z ( x = A -> ph ) ) ) |
| 10 | 19.37v | |- ( E. z ( x = A -> ph ) <-> ( x = A -> E. z ph ) ) |
|
| 11 | 10 | exbii | |- ( E. y E. z ( x = A -> ph ) <-> E. y ( x = A -> E. z ph ) ) |
| 12 | 19.37v | |- ( E. y ( x = A -> E. z ph ) <-> ( x = A -> E. y E. z ph ) ) |
|
| 13 | 11 12 | bitri | |- ( E. y E. z ( x = A -> ph ) <-> ( x = A -> E. y E. z ph ) ) |
| 14 | 9 13 | imbitrdi | |- ( ( B e. _V /\ C e. _V ) -> ( ( x = A -> ps ) -> ( x = A -> E. y E. z ph ) ) ) |
| 15 | 14 | pm2.86d | |- ( ( B e. _V /\ C e. _V ) -> ( x = A -> ( ps -> E. y E. z ph ) ) ) |
| 16 | 15 | 3adant1 | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( x = A -> ( ps -> E. y E. z ph ) ) ) |
| 17 | 16 | imp | |- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ x = A ) -> ( ps -> E. y E. z ph ) ) |
| 18 | 5 17 | spcimedv | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( ps -> E. x E. y E. z ph ) ) |
| 19 | 2 3 4 18 | syl3an | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ps -> E. x E. y E. z ph ) ) |