This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that (/) Or { B } ). (Contributed by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sossfld | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ) | |
| 2 | sotrieq | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) → ( 𝑥 = 𝐵 ↔ ¬ ( 𝑥 𝑅 𝐵 ∨ 𝐵 𝑅 𝑥 ) ) ) | |
| 3 | 2 | necon2abid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝐵 ∨ 𝐵 𝑅 𝑥 ) ↔ 𝑥 ≠ 𝐵 ) ) |
| 4 | 3 | anass1rs | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝐵 ∨ 𝐵 𝑅 𝑥 ) ↔ 𝑥 ≠ 𝐵 ) ) |
| 5 | breldmg | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝑥 𝑅 𝐵 ) → 𝑥 ∈ dom 𝑅 ) | |
| 6 | 5 | 3expia | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑥 𝑅 𝐵 → 𝑥 ∈ dom 𝑅 ) ) |
| 7 | 6 | ancoms | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝑅 𝐵 → 𝑥 ∈ dom 𝑅 ) ) |
| 8 | brelrng | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 𝑅 𝑥 ) → 𝑥 ∈ ran 𝑅 ) | |
| 9 | 8 | 3expia | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 𝑅 𝑥 → 𝑥 ∈ ran 𝑅 ) ) |
| 10 | 7 9 | orim12d | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝐵 ∨ 𝐵 𝑅 𝑥 ) → ( 𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅 ) ) ) |
| 11 | elun | ⊢ ( 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ↔ ( 𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅 ) ) | |
| 12 | 10 11 | imbitrrdi | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝐵 ∨ 𝐵 𝑅 𝑥 ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 13 | 12 | adantll | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝐵 ∨ 𝐵 𝑅 𝑥 ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 14 | 4 13 | sylbird | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≠ 𝐵 → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 15 | 14 | expimpd | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 16 | 1 15 | biimtrid | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 17 | 16 | ssrdv | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |