This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of the open end of a left-open real interval. (Contributed by Thierry Arnoux, 28-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snunioc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccid | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
| 3 | 2 | uneq1d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐴 ) ∪ ( 𝐴 (,] 𝐵 ) ) = ( { 𝐴 } ∪ ( 𝐴 (,] 𝐵 ) ) ) |
| 4 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) | |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) | |
| 6 | xrleid | ⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴 ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐴 ) |
| 8 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 9 | df-icc | ⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 10 | df-ioc | ⊢ (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 11 | xrltnle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴 ) ) | |
| 12 | xrletr | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 𝑤 ≤ 𝐵 ) ) | |
| 13 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤 ) ) → 𝐴 ∈ ℝ* ) | |
| 14 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤 ) ) → 𝑤 ∈ ℝ* ) | |
| 15 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤 ) ) → 𝐴 < 𝑤 ) | |
| 16 | 13 14 15 | xrltled | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤 ) ) → 𝐴 ≤ 𝑤 ) |
| 17 | 16 | ex | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤 ) → 𝐴 ≤ 𝑤 ) ) |
| 18 | 9 10 11 9 12 17 | ixxun | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( ( 𝐴 [,] 𝐴 ) ∪ ( 𝐴 (,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 19 | 4 4 5 7 8 18 | syl32anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐴 ) ∪ ( 𝐴 (,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 20 | 3 19 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |