This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of the open end of a left-open real interval. (Contributed by Thierry Arnoux, 28-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snunioc | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( { A } u. ( A (,] B ) ) = ( A [,] B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccid | |- ( A e. RR* -> ( A [,] A ) = { A } ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A [,] A ) = { A } ) |
| 3 | 2 | uneq1d | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A [,] A ) u. ( A (,] B ) ) = ( { A } u. ( A (,] B ) ) ) |
| 4 | simp1 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. RR* ) |
|
| 5 | simp2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. RR* ) |
|
| 6 | xrleid | |- ( A e. RR* -> A <_ A ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A <_ A ) |
| 8 | simp3 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A <_ B ) |
|
| 9 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 10 | df-ioc | |- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
|
| 11 | xrltnle | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w <-> -. w <_ A ) ) |
|
| 12 | xrletr | |- ( ( w e. RR* /\ A e. RR* /\ B e. RR* ) -> ( ( w <_ A /\ A <_ B ) -> w <_ B ) ) |
|
| 13 | simpl1 | |- ( ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) /\ ( A <_ A /\ A < w ) ) -> A e. RR* ) |
|
| 14 | simpl3 | |- ( ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) /\ ( A <_ A /\ A < w ) ) -> w e. RR* ) |
|
| 15 | simprr | |- ( ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) /\ ( A <_ A /\ A < w ) ) -> A < w ) |
|
| 16 | 13 14 15 | xrltled | |- ( ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) /\ ( A <_ A /\ A < w ) ) -> A <_ w ) |
| 17 | 16 | ex | |- ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) -> ( ( A <_ A /\ A < w ) -> A <_ w ) ) |
| 18 | 9 10 11 9 12 17 | ixxun | |- ( ( ( A e. RR* /\ A e. RR* /\ B e. RR* ) /\ ( A <_ A /\ A <_ B ) ) -> ( ( A [,] A ) u. ( A (,] B ) ) = ( A [,] B ) ) |
| 19 | 4 4 5 7 8 18 | syl32anc | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A [,] A ) u. ( A (,] B ) ) = ( A [,] B ) ) |
| 20 | 3 19 | eqtr3d | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( { A } u. ( A (,] B ) ) = ( A [,] B ) ) |