This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a singleton A is identical with the monoid of endofunctions on A . (Contributed by AV, 31-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snsymgefmndeq | ⊢ ( 𝐴 = { 𝑋 } → ( EndoFMnd ‘ 𝐴 ) = ( SymGrp ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd | ⊢ ( 𝑋 ∈ V → { { 〈 𝑋 , 𝑋 〉 } } ⊆ { { 〈 𝑋 , 𝑋 〉 } } ) | |
| 2 | eqid | ⊢ ( EndoFMnd ‘ { 𝑋 } ) = ( EndoFMnd ‘ { 𝑋 } ) | |
| 3 | eqid | ⊢ ( Base ‘ ( EndoFMnd ‘ { 𝑋 } ) ) = ( Base ‘ ( EndoFMnd ‘ { 𝑋 } ) ) | |
| 4 | eqid | ⊢ { 𝑋 } = { 𝑋 } | |
| 5 | 2 3 4 | efmnd1bas | ⊢ ( 𝑋 ∈ V → ( Base ‘ ( EndoFMnd ‘ { 𝑋 } ) ) = { { 〈 𝑋 , 𝑋 〉 } } ) |
| 6 | eqid | ⊢ ( SymGrp ‘ { 𝑋 } ) = ( SymGrp ‘ { 𝑋 } ) | |
| 7 | eqid | ⊢ ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) = ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) | |
| 8 | 6 7 4 | symg1bas | ⊢ ( 𝑋 ∈ V → ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) = { { 〈 𝑋 , 𝑋 〉 } } ) |
| 9 | 1 5 8 | 3sstr4d | ⊢ ( 𝑋 ∈ V → ( Base ‘ ( EndoFMnd ‘ { 𝑋 } ) ) ⊆ ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) ) |
| 10 | fvexd | ⊢ ( 𝑋 ∈ V → ( EndoFMnd ‘ { 𝑋 } ) ∈ V ) | |
| 11 | fvexd | ⊢ ( 𝑋 ∈ V → ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) ∈ V ) | |
| 12 | 6 7 2 | symgressbas | ⊢ ( SymGrp ‘ { 𝑋 } ) = ( ( EndoFMnd ‘ { 𝑋 } ) ↾s ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) ) |
| 13 | 12 3 | ressid2 | ⊢ ( ( ( Base ‘ ( EndoFMnd ‘ { 𝑋 } ) ) ⊆ ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) ∧ ( EndoFMnd ‘ { 𝑋 } ) ∈ V ∧ ( Base ‘ ( SymGrp ‘ { 𝑋 } ) ) ∈ V ) → ( SymGrp ‘ { 𝑋 } ) = ( EndoFMnd ‘ { 𝑋 } ) ) |
| 14 | 9 10 11 13 | syl3anc | ⊢ ( 𝑋 ∈ V → ( SymGrp ‘ { 𝑋 } ) = ( EndoFMnd ‘ { 𝑋 } ) ) |
| 15 | 14 | eqcomd | ⊢ ( 𝑋 ∈ V → ( EndoFMnd ‘ { 𝑋 } ) = ( SymGrp ‘ { 𝑋 } ) ) |
| 16 | fveq2 | ⊢ ( 𝐴 = { 𝑋 } → ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ { 𝑋 } ) ) | |
| 17 | fveq2 | ⊢ ( 𝐴 = { 𝑋 } → ( SymGrp ‘ 𝐴 ) = ( SymGrp ‘ { 𝑋 } ) ) | |
| 18 | 16 17 | eqeq12d | ⊢ ( 𝐴 = { 𝑋 } → ( ( EndoFMnd ‘ 𝐴 ) = ( SymGrp ‘ 𝐴 ) ↔ ( EndoFMnd ‘ { 𝑋 } ) = ( SymGrp ‘ { 𝑋 } ) ) ) |
| 19 | 15 18 | syl5ibrcom | ⊢ ( 𝑋 ∈ V → ( 𝐴 = { 𝑋 } → ( EndoFMnd ‘ 𝐴 ) = ( SymGrp ‘ 𝐴 ) ) ) |
| 20 | snprc | ⊢ ( ¬ 𝑋 ∈ V ↔ { 𝑋 } = ∅ ) | |
| 21 | 20 | biimpi | ⊢ ( ¬ 𝑋 ∈ V → { 𝑋 } = ∅ ) |
| 22 | 21 | eqeq2d | ⊢ ( ¬ 𝑋 ∈ V → ( 𝐴 = { 𝑋 } ↔ 𝐴 = ∅ ) ) |
| 23 | 0symgefmndeq | ⊢ ( EndoFMnd ‘ ∅ ) = ( SymGrp ‘ ∅ ) | |
| 24 | fveq2 | ⊢ ( 𝐴 = ∅ → ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ ∅ ) ) | |
| 25 | fveq2 | ⊢ ( 𝐴 = ∅ → ( SymGrp ‘ 𝐴 ) = ( SymGrp ‘ ∅ ) ) | |
| 26 | 23 24 25 | 3eqtr4a | ⊢ ( 𝐴 = ∅ → ( EndoFMnd ‘ 𝐴 ) = ( SymGrp ‘ 𝐴 ) ) |
| 27 | 22 26 | biimtrdi | ⊢ ( ¬ 𝑋 ∈ V → ( 𝐴 = { 𝑋 } → ( EndoFMnd ‘ 𝐴 ) = ( SymGrp ‘ 𝐴 ) ) ) |
| 28 | 19 27 | pm2.61i | ⊢ ( 𝐴 = { 𝑋 } → ( EndoFMnd ‘ 𝐴 ) = ( SymGrp ‘ 𝐴 ) ) |