This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on a singleton consists of the identity only. (Contributed by AV, 31-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmnd1bas.1 | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| efmnd1bas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| efmnd1bas.0 | ⊢ 𝐴 = { 𝐼 } | ||
| Assertion | efmnd1bas | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = { { 〈 𝐼 , 𝐼 〉 } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmnd1bas.1 | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | efmnd1bas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | efmnd1bas.0 | ⊢ 𝐴 = { 𝐼 } | |
| 4 | 3 | fveq2i | ⊢ ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ { 𝐼 } ) |
| 5 | 1 4 | eqtri | ⊢ 𝐺 = ( EndoFMnd ‘ { 𝐼 } ) |
| 6 | 5 2 | efmndbas | ⊢ 𝐵 = ( { 𝐼 } ↑m { 𝐼 } ) |
| 7 | fsng | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉 ) → ( 𝑝 : { 𝐼 } ⟶ { 𝐼 } ↔ 𝑝 = { 〈 𝐼 , 𝐼 〉 } ) ) | |
| 8 | 7 | anidms | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑝 : { 𝐼 } ⟶ { 𝐼 } ↔ 𝑝 = { 〈 𝐼 , 𝐼 〉 } ) ) |
| 9 | snex | ⊢ { 𝐼 } ∈ V | |
| 10 | 9 9 | elmap | ⊢ ( 𝑝 ∈ ( { 𝐼 } ↑m { 𝐼 } ) ↔ 𝑝 : { 𝐼 } ⟶ { 𝐼 } ) |
| 11 | velsn | ⊢ ( 𝑝 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↔ 𝑝 = { 〈 𝐼 , 𝐼 〉 } ) | |
| 12 | 8 10 11 | 3bitr4g | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑝 ∈ ( { 𝐼 } ↑m { 𝐼 } ) ↔ 𝑝 ∈ { { 〈 𝐼 , 𝐼 〉 } } ) ) |
| 13 | 12 | eqrdv | ⊢ ( 𝐼 ∈ 𝑉 → ( { 𝐼 } ↑m { 𝐼 } ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
| 14 | 6 13 | eqtrid | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = { { 〈 𝐼 , 𝐼 〉 } } ) |