This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on the empty set is identical with the monoid of endofunctions on the empty set. (Contributed by AV, 30-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0symgefmndeq | ⊢ ( EndoFMnd ‘ ∅ ) = ( SymGrp ‘ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ { ∅ } ⊆ { ∅ } | |
| 2 | fvex | ⊢ ( EndoFMnd ‘ ∅ ) ∈ V | |
| 3 | p0ex | ⊢ { ∅ } ∈ V | |
| 4 | eqid | ⊢ ( SymGrp ‘ ∅ ) = ( SymGrp ‘ ∅ ) | |
| 5 | symgbas0 | ⊢ ( Base ‘ ( SymGrp ‘ ∅ ) ) = { ∅ } | |
| 6 | 5 | eqcomi | ⊢ { ∅ } = ( Base ‘ ( SymGrp ‘ ∅ ) ) |
| 7 | eqid | ⊢ ( EndoFMnd ‘ ∅ ) = ( EndoFMnd ‘ ∅ ) | |
| 8 | 4 6 7 | symgressbas | ⊢ ( SymGrp ‘ ∅ ) = ( ( EndoFMnd ‘ ∅ ) ↾s { ∅ } ) |
| 9 | efmndbas0 | ⊢ ( Base ‘ ( EndoFMnd ‘ ∅ ) ) = { ∅ } | |
| 10 | 9 | eqcomi | ⊢ { ∅ } = ( Base ‘ ( EndoFMnd ‘ ∅ ) ) |
| 11 | 8 10 | ressid2 | ⊢ ( ( { ∅ } ⊆ { ∅ } ∧ ( EndoFMnd ‘ ∅ ) ∈ V ∧ { ∅ } ∈ V ) → ( SymGrp ‘ ∅ ) = ( EndoFMnd ‘ ∅ ) ) |
| 12 | 1 2 3 11 | mp3an | ⊢ ( SymGrp ‘ ∅ ) = ( EndoFMnd ‘ ∅ ) |
| 13 | 12 | eqcomi | ⊢ ( EndoFMnd ‘ ∅ ) = ( SymGrp ‘ ∅ ) |