This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003) (Revised by AV, 17-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snmapen | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 } ↑m 𝐵 ) ≈ { 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovexd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 } ↑m 𝐵 ) ∈ V ) | |
| 2 | snex | ⊢ { 𝐴 } ∈ V | |
| 3 | 2 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → { 𝐴 } ∈ V ) |
| 4 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) | |
| 5 | 4 | a1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ ( { 𝐴 } ↑m 𝐵 ) → 𝐴 ∈ 𝑉 ) ) |
| 6 | 2 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ∈ V ) |
| 7 | 6 | anim1ci | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ∈ 𝑊 ∧ { 𝐴 } ∈ V ) ) |
| 8 | xpexg | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ { 𝐴 } ∈ V ) → ( 𝐵 × { 𝐴 } ) ∈ V ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 × { 𝐴 } ) ∈ V ) |
| 10 | 9 | a1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑦 ∈ { 𝐴 } → ( 𝐵 × { 𝐴 } ) ∈ V ) ) |
| 11 | velsn | ⊢ ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 ) | |
| 12 | 11 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 ) ) |
| 13 | elmapg | ⊢ ( ( { 𝐴 } ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ ( { 𝐴 } ↑m 𝐵 ) ↔ 𝑥 : 𝐵 ⟶ { 𝐴 } ) ) | |
| 14 | 6 13 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ ( { 𝐴 } ↑m 𝐵 ) ↔ 𝑥 : 𝐵 ⟶ { 𝐴 } ) ) |
| 15 | fconst2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 : 𝐵 ⟶ { 𝐴 } ↔ 𝑥 = ( 𝐵 × { 𝐴 } ) ) ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 : 𝐵 ⟶ { 𝐴 } ↔ 𝑥 = ( 𝐵 × { 𝐴 } ) ) ) |
| 17 | 14 16 | bitr2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 = ( 𝐵 × { 𝐴 } ) ↔ 𝑥 ∈ ( { 𝐴 } ↑m 𝐵 ) ) ) |
| 18 | 12 17 | anbi12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑦 ∈ { 𝐴 } ∧ 𝑥 = ( 𝐵 × { 𝐴 } ) ) ↔ ( 𝑦 = 𝐴 ∧ 𝑥 ∈ ( { 𝐴 } ↑m 𝐵 ) ) ) ) |
| 19 | ancom | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ ( { 𝐴 } ↑m 𝐵 ) ) ↔ ( 𝑥 ∈ ( { 𝐴 } ↑m 𝐵 ) ∧ 𝑦 = 𝐴 ) ) | |
| 20 | 18 19 | bitr2di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ ( { 𝐴 } ↑m 𝐵 ) ∧ 𝑦 = 𝐴 ) ↔ ( 𝑦 ∈ { 𝐴 } ∧ 𝑥 = ( 𝐵 × { 𝐴 } ) ) ) ) |
| 21 | 1 3 5 10 20 | en2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 } ↑m 𝐵 ) ≈ { 𝐴 } ) |