This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003) (Revised by AV, 17-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snmapen |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovexd | ||
| 2 | snex | ||
| 3 | 2 | a1i | |
| 4 | simpl | ||
| 5 | 4 | a1d | |
| 6 | 2 | a1i | |
| 7 | 6 | anim1ci | |
| 8 | xpexg | ||
| 9 | 7 8 | syl | |
| 10 | 9 | a1d | |
| 11 | velsn | ||
| 12 | 11 | a1i | |
| 13 | elmapg | ||
| 14 | 6 13 | sylan | |
| 15 | fconst2g | ||
| 16 | 15 | adantr | |
| 17 | 14 16 | bitr2d | |
| 18 | 12 17 | anbi12d | |
| 19 | ancom | ||
| 20 | 18 19 | bitr2di | |
| 21 | 1 3 5 10 20 | en2d |