This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003) (Revised by AV, 17-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snmapen | |- ( ( A e. V /\ B e. W ) -> ( { A } ^m B ) ~~ { A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovexd | |- ( ( A e. V /\ B e. W ) -> ( { A } ^m B ) e. _V ) |
|
| 2 | snex | |- { A } e. _V |
|
| 3 | 2 | a1i | |- ( ( A e. V /\ B e. W ) -> { A } e. _V ) |
| 4 | simpl | |- ( ( A e. V /\ B e. W ) -> A e. V ) |
|
| 5 | 4 | a1d | |- ( ( A e. V /\ B e. W ) -> ( x e. ( { A } ^m B ) -> A e. V ) ) |
| 6 | 2 | a1i | |- ( A e. V -> { A } e. _V ) |
| 7 | 6 | anim1ci | |- ( ( A e. V /\ B e. W ) -> ( B e. W /\ { A } e. _V ) ) |
| 8 | xpexg | |- ( ( B e. W /\ { A } e. _V ) -> ( B X. { A } ) e. _V ) |
|
| 9 | 7 8 | syl | |- ( ( A e. V /\ B e. W ) -> ( B X. { A } ) e. _V ) |
| 10 | 9 | a1d | |- ( ( A e. V /\ B e. W ) -> ( y e. { A } -> ( B X. { A } ) e. _V ) ) |
| 11 | velsn | |- ( y e. { A } <-> y = A ) |
|
| 12 | 11 | a1i | |- ( ( A e. V /\ B e. W ) -> ( y e. { A } <-> y = A ) ) |
| 13 | elmapg | |- ( ( { A } e. _V /\ B e. W ) -> ( x e. ( { A } ^m B ) <-> x : B --> { A } ) ) |
|
| 14 | 6 13 | sylan | |- ( ( A e. V /\ B e. W ) -> ( x e. ( { A } ^m B ) <-> x : B --> { A } ) ) |
| 15 | fconst2g | |- ( A e. V -> ( x : B --> { A } <-> x = ( B X. { A } ) ) ) |
|
| 16 | 15 | adantr | |- ( ( A e. V /\ B e. W ) -> ( x : B --> { A } <-> x = ( B X. { A } ) ) ) |
| 17 | 14 16 | bitr2d | |- ( ( A e. V /\ B e. W ) -> ( x = ( B X. { A } ) <-> x e. ( { A } ^m B ) ) ) |
| 18 | 12 17 | anbi12d | |- ( ( A e. V /\ B e. W ) -> ( ( y e. { A } /\ x = ( B X. { A } ) ) <-> ( y = A /\ x e. ( { A } ^m B ) ) ) ) |
| 19 | ancom | |- ( ( y = A /\ x e. ( { A } ^m B ) ) <-> ( x e. ( { A } ^m B ) /\ y = A ) ) |
|
| 20 | 18 19 | bitr2di | |- ( ( A e. V /\ B e. W ) -> ( ( x e. ( { A } ^m B ) /\ y = A ) <-> ( y e. { A } /\ x = ( B X. { A } ) ) ) ) |
| 21 | 1 3 5 10 20 | en2d | |- ( ( A e. V /\ B e. W ) -> ( { A } ^m B ) ~~ { A } ) |