This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smores2 | |- ( ( Smo F /\ Ord A ) -> Smo ( F |` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsmo2 | |- ( Smo F <-> ( F : dom F --> On /\ Ord dom F /\ A. x e. dom F A. y e. x ( F ` y ) e. ( F ` x ) ) ) |
|
| 2 | 1 | simp1bi | |- ( Smo F -> F : dom F --> On ) |
| 3 | 2 | ffund | |- ( Smo F -> Fun F ) |
| 4 | funres | |- ( Fun F -> Fun ( F |` A ) ) |
|
| 5 | 4 | funfnd | |- ( Fun F -> ( F |` A ) Fn dom ( F |` A ) ) |
| 6 | 3 5 | syl | |- ( Smo F -> ( F |` A ) Fn dom ( F |` A ) ) |
| 7 | df-ima | |- ( F " A ) = ran ( F |` A ) |
|
| 8 | imassrn | |- ( F " A ) C_ ran F |
|
| 9 | 7 8 | eqsstrri | |- ran ( F |` A ) C_ ran F |
| 10 | 2 | frnd | |- ( Smo F -> ran F C_ On ) |
| 11 | 9 10 | sstrid | |- ( Smo F -> ran ( F |` A ) C_ On ) |
| 12 | df-f | |- ( ( F |` A ) : dom ( F |` A ) --> On <-> ( ( F |` A ) Fn dom ( F |` A ) /\ ran ( F |` A ) C_ On ) ) |
|
| 13 | 6 11 12 | sylanbrc | |- ( Smo F -> ( F |` A ) : dom ( F |` A ) --> On ) |
| 14 | 13 | adantr | |- ( ( Smo F /\ Ord A ) -> ( F |` A ) : dom ( F |` A ) --> On ) |
| 15 | smodm | |- ( Smo F -> Ord dom F ) |
|
| 16 | ordin | |- ( ( Ord A /\ Ord dom F ) -> Ord ( A i^i dom F ) ) |
|
| 17 | dmres | |- dom ( F |` A ) = ( A i^i dom F ) |
|
| 18 | ordeq | |- ( dom ( F |` A ) = ( A i^i dom F ) -> ( Ord dom ( F |` A ) <-> Ord ( A i^i dom F ) ) ) |
|
| 19 | 17 18 | ax-mp | |- ( Ord dom ( F |` A ) <-> Ord ( A i^i dom F ) ) |
| 20 | 16 19 | sylibr | |- ( ( Ord A /\ Ord dom F ) -> Ord dom ( F |` A ) ) |
| 21 | 20 | ancoms | |- ( ( Ord dom F /\ Ord A ) -> Ord dom ( F |` A ) ) |
| 22 | 15 21 | sylan | |- ( ( Smo F /\ Ord A ) -> Ord dom ( F |` A ) ) |
| 23 | resss | |- ( F |` A ) C_ F |
|
| 24 | dmss | |- ( ( F |` A ) C_ F -> dom ( F |` A ) C_ dom F ) |
|
| 25 | 23 24 | ax-mp | |- dom ( F |` A ) C_ dom F |
| 26 | 1 | simp3bi | |- ( Smo F -> A. x e. dom F A. y e. x ( F ` y ) e. ( F ` x ) ) |
| 27 | ssralv | |- ( dom ( F |` A ) C_ dom F -> ( A. x e. dom F A. y e. x ( F ` y ) e. ( F ` x ) -> A. x e. dom ( F |` A ) A. y e. x ( F ` y ) e. ( F ` x ) ) ) |
|
| 28 | 25 26 27 | mpsyl | |- ( Smo F -> A. x e. dom ( F |` A ) A. y e. x ( F ` y ) e. ( F ` x ) ) |
| 29 | 28 | adantr | |- ( ( Smo F /\ Ord A ) -> A. x e. dom ( F |` A ) A. y e. x ( F ` y ) e. ( F ` x ) ) |
| 30 | ordtr1 | |- ( Ord dom ( F |` A ) -> ( ( y e. x /\ x e. dom ( F |` A ) ) -> y e. dom ( F |` A ) ) ) |
|
| 31 | 22 30 | syl | |- ( ( Smo F /\ Ord A ) -> ( ( y e. x /\ x e. dom ( F |` A ) ) -> y e. dom ( F |` A ) ) ) |
| 32 | inss1 | |- ( A i^i dom F ) C_ A |
|
| 33 | 17 32 | eqsstri | |- dom ( F |` A ) C_ A |
| 34 | 33 | sseli | |- ( y e. dom ( F |` A ) -> y e. A ) |
| 35 | 31 34 | syl6 | |- ( ( Smo F /\ Ord A ) -> ( ( y e. x /\ x e. dom ( F |` A ) ) -> y e. A ) ) |
| 36 | 35 | expcomd | |- ( ( Smo F /\ Ord A ) -> ( x e. dom ( F |` A ) -> ( y e. x -> y e. A ) ) ) |
| 37 | 36 | imp31 | |- ( ( ( ( Smo F /\ Ord A ) /\ x e. dom ( F |` A ) ) /\ y e. x ) -> y e. A ) |
| 38 | 37 | fvresd | |- ( ( ( ( Smo F /\ Ord A ) /\ x e. dom ( F |` A ) ) /\ y e. x ) -> ( ( F |` A ) ` y ) = ( F ` y ) ) |
| 39 | 33 | sseli | |- ( x e. dom ( F |` A ) -> x e. A ) |
| 40 | 39 | fvresd | |- ( x e. dom ( F |` A ) -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
| 41 | 40 | ad2antlr | |- ( ( ( ( Smo F /\ Ord A ) /\ x e. dom ( F |` A ) ) /\ y e. x ) -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
| 42 | 38 41 | eleq12d | |- ( ( ( ( Smo F /\ Ord A ) /\ x e. dom ( F |` A ) ) /\ y e. x ) -> ( ( ( F |` A ) ` y ) e. ( ( F |` A ) ` x ) <-> ( F ` y ) e. ( F ` x ) ) ) |
| 43 | 42 | ralbidva | |- ( ( ( Smo F /\ Ord A ) /\ x e. dom ( F |` A ) ) -> ( A. y e. x ( ( F |` A ) ` y ) e. ( ( F |` A ) ` x ) <-> A. y e. x ( F ` y ) e. ( F ` x ) ) ) |
| 44 | 43 | ralbidva | |- ( ( Smo F /\ Ord A ) -> ( A. x e. dom ( F |` A ) A. y e. x ( ( F |` A ) ` y ) e. ( ( F |` A ) ` x ) <-> A. x e. dom ( F |` A ) A. y e. x ( F ` y ) e. ( F ` x ) ) ) |
| 45 | 29 44 | mpbird | |- ( ( Smo F /\ Ord A ) -> A. x e. dom ( F |` A ) A. y e. x ( ( F |` A ) ` y ) e. ( ( F |` A ) ` x ) ) |
| 46 | dfsmo2 | |- ( Smo ( F |` A ) <-> ( ( F |` A ) : dom ( F |` A ) --> On /\ Ord dom ( F |` A ) /\ A. x e. dom ( F |` A ) A. y e. x ( ( F |` A ) ` y ) e. ( ( F |` A ) ` x ) ) ) |
|
| 47 | 14 22 45 46 | syl3anbrc | |- ( ( Smo F /\ Ord A ) -> Smo ( F |` A ) ) |