This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shlesb1.1 | ⊢ 𝐴 ∈ Sℋ | |
| shlesb1.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | shsval2i | ⊢ ( 𝐴 +ℋ 𝐵 ) = ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shlesb1.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shlesb1.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 4 | ssintub | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } | |
| 5 | 3 4 | sstri | ⊢ 𝐴 ⊆ ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } |
| 6 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 7 | 6 4 | sstri | ⊢ 𝐵 ⊆ ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } |
| 8 | 5 7 | pm3.2i | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ∧ 𝐵 ⊆ ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ) |
| 9 | ssrab2 | ⊢ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ⊆ Sℋ | |
| 10 | 1 2 | shscli | ⊢ ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ |
| 11 | 1 2 | shunssi | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 12 | sseq2 | ⊢ ( 𝑥 = ( 𝐴 +ℋ 𝐵 ) → ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) | |
| 13 | 12 | rspcev | ⊢ ( ( ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) → ∃ 𝑥 ∈ Sℋ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 ) |
| 14 | 10 11 13 | mp2an | ⊢ ∃ 𝑥 ∈ Sℋ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 |
| 15 | rabn0 | ⊢ ( { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ≠ ∅ ↔ ∃ 𝑥 ∈ Sℋ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 ) | |
| 16 | 14 15 | mpbir | ⊢ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ≠ ∅ |
| 17 | shintcl | ⊢ ( ( { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ⊆ Sℋ ∧ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ≠ ∅ ) → ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ∈ Sℋ ) | |
| 18 | 9 16 17 | mp2an | ⊢ ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ∈ Sℋ |
| 19 | 1 2 18 | shslubi | ⊢ ( ( 𝐴 ⊆ ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ∧ 𝐵 ⊆ ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ) ↔ ( 𝐴 +ℋ 𝐵 ) ⊆ ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ) |
| 20 | 8 19 | mpbi | ⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } |
| 21 | 12 | elrab | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ↔ ( ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 22 | 10 11 21 | mpbir2an | ⊢ ( 𝐴 +ℋ 𝐵 ) ∈ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } |
| 23 | intss1 | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } → ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ⊆ ( 𝐴 +ℋ 𝐵 ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 25 | 20 24 | eqssi | ⊢ ( 𝐴 +ℋ 𝐵 ) = ∩ { 𝑥 ∈ Sℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } |