This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shintcl | ⊢ ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ Sℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteq | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) → ∩ 𝐴 = ∩ if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) → ( ∩ 𝐴 ∈ Sℋ ↔ ∩ if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ∈ Sℋ ) ) |
| 3 | sseq1 | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) → ( 𝐴 ⊆ Sℋ ↔ if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ⊆ Sℋ ) ) | |
| 4 | neeq1 | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) → ( 𝐴 ≠ ∅ ↔ if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ≠ ∅ ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) → ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) ↔ ( if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ⊆ Sℋ ∧ if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ≠ ∅ ) ) ) |
| 6 | sseq1 | ⊢ ( Sℋ = if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) → ( Sℋ ⊆ Sℋ ↔ if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ⊆ Sℋ ) ) | |
| 7 | neeq1 | ⊢ ( Sℋ = if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) → ( Sℋ ≠ ∅ ↔ if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ≠ ∅ ) ) | |
| 8 | 6 7 | anbi12d | ⊢ ( Sℋ = if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) → ( ( Sℋ ⊆ Sℋ ∧ Sℋ ≠ ∅ ) ↔ ( if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ⊆ Sℋ ∧ if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ≠ ∅ ) ) ) |
| 9 | ssid | ⊢ Sℋ ⊆ Sℋ | |
| 10 | h0elsh | ⊢ 0ℋ ∈ Sℋ | |
| 11 | 10 | ne0ii | ⊢ Sℋ ≠ ∅ |
| 12 | 9 11 | pm3.2i | ⊢ ( Sℋ ⊆ Sℋ ∧ Sℋ ≠ ∅ ) |
| 13 | 5 8 12 | elimhyp | ⊢ ( if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ⊆ Sℋ ∧ if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ≠ ∅ ) |
| 14 | 13 | shintcli | ⊢ ∩ if ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Sℋ ) ∈ Sℋ |
| 15 | 2 14 | dedth | ⊢ ( ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ Sℋ ) |