This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shlesb1.1 | |- A e. SH |
|
| shlesb1.2 | |- B e. SH |
||
| Assertion | shsval2i | |- ( A +H B ) = |^| { x e. SH | ( A u. B ) C_ x } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shlesb1.1 | |- A e. SH |
|
| 2 | shlesb1.2 | |- B e. SH |
|
| 3 | ssun1 | |- A C_ ( A u. B ) |
|
| 4 | ssintub | |- ( A u. B ) C_ |^| { x e. SH | ( A u. B ) C_ x } |
|
| 5 | 3 4 | sstri | |- A C_ |^| { x e. SH | ( A u. B ) C_ x } |
| 6 | ssun2 | |- B C_ ( A u. B ) |
|
| 7 | 6 4 | sstri | |- B C_ |^| { x e. SH | ( A u. B ) C_ x } |
| 8 | 5 7 | pm3.2i | |- ( A C_ |^| { x e. SH | ( A u. B ) C_ x } /\ B C_ |^| { x e. SH | ( A u. B ) C_ x } ) |
| 9 | ssrab2 | |- { x e. SH | ( A u. B ) C_ x } C_ SH |
|
| 10 | 1 2 | shscli | |- ( A +H B ) e. SH |
| 11 | 1 2 | shunssi | |- ( A u. B ) C_ ( A +H B ) |
| 12 | sseq2 | |- ( x = ( A +H B ) -> ( ( A u. B ) C_ x <-> ( A u. B ) C_ ( A +H B ) ) ) |
|
| 13 | 12 | rspcev | |- ( ( ( A +H B ) e. SH /\ ( A u. B ) C_ ( A +H B ) ) -> E. x e. SH ( A u. B ) C_ x ) |
| 14 | 10 11 13 | mp2an | |- E. x e. SH ( A u. B ) C_ x |
| 15 | rabn0 | |- ( { x e. SH | ( A u. B ) C_ x } =/= (/) <-> E. x e. SH ( A u. B ) C_ x ) |
|
| 16 | 14 15 | mpbir | |- { x e. SH | ( A u. B ) C_ x } =/= (/) |
| 17 | shintcl | |- ( ( { x e. SH | ( A u. B ) C_ x } C_ SH /\ { x e. SH | ( A u. B ) C_ x } =/= (/) ) -> |^| { x e. SH | ( A u. B ) C_ x } e. SH ) |
|
| 18 | 9 16 17 | mp2an | |- |^| { x e. SH | ( A u. B ) C_ x } e. SH |
| 19 | 1 2 18 | shslubi | |- ( ( A C_ |^| { x e. SH | ( A u. B ) C_ x } /\ B C_ |^| { x e. SH | ( A u. B ) C_ x } ) <-> ( A +H B ) C_ |^| { x e. SH | ( A u. B ) C_ x } ) |
| 20 | 8 19 | mpbi | |- ( A +H B ) C_ |^| { x e. SH | ( A u. B ) C_ x } |
| 21 | 12 | elrab | |- ( ( A +H B ) e. { x e. SH | ( A u. B ) C_ x } <-> ( ( A +H B ) e. SH /\ ( A u. B ) C_ ( A +H B ) ) ) |
| 22 | 10 11 21 | mpbir2an | |- ( A +H B ) e. { x e. SH | ( A u. B ) C_ x } |
| 23 | intss1 | |- ( ( A +H B ) e. { x e. SH | ( A u. B ) C_ x } -> |^| { x e. SH | ( A u. B ) C_ x } C_ ( A +H B ) ) |
|
| 24 | 22 23 | ax-mp | |- |^| { x e. SH | ( A u. B ) C_ x } C_ ( A +H B ) |
| 25 | 20 24 | eqssi | |- ( A +H B ) = |^| { x e. SH | ( A u. B ) C_ x } |