This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shslub.1 | ⊢ 𝐴 ∈ Sℋ | |
| shslub.2 | ⊢ 𝐵 ∈ Sℋ | ||
| shslub.3 | ⊢ 𝐶 ∈ Sℋ | ||
| Assertion | shslubi | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shslub.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shslub.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | shslub.3 | ⊢ 𝐶 ∈ Sℋ | |
| 4 | 1 3 2 | shlessi | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐶 +ℋ 𝐵 ) ) |
| 5 | 3 2 | shscomi | ⊢ ( 𝐶 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐶 ) |
| 6 | 4 5 | sseqtrdi | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐵 +ℋ 𝐶 ) ) |
| 7 | 2 3 3 | shlessi | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐵 +ℋ 𝐶 ) ⊆ ( 𝐶 +ℋ 𝐶 ) ) |
| 8 | 3 | shsidmi | ⊢ ( 𝐶 +ℋ 𝐶 ) = 𝐶 |
| 9 | 7 8 | sseqtrdi | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐵 +ℋ 𝐶 ) ⊆ 𝐶 ) |
| 10 | 6 9 | sylan9ss | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 ) |
| 11 | 1 2 | shsub1i | ⊢ 𝐴 ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 12 | sstr | ⊢ ( ( 𝐴 ⊆ ( 𝐴 +ℋ 𝐵 ) ∧ ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 ) → 𝐴 ⊆ 𝐶 ) | |
| 13 | 11 12 | mpan | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 → 𝐴 ⊆ 𝐶 ) |
| 14 | 2 1 | shsub2i | ⊢ 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 15 | sstr | ⊢ ( ( 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) ∧ ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 ) → 𝐵 ⊆ 𝐶 ) | |
| 16 | 14 15 | mpan | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 → 𝐵 ⊆ 𝐶 ) |
| 17 | 13 16 | jca | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 → ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ) |
| 18 | 10 17 | impbii | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 ) |