This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shsidm.1 | ⊢ 𝐴 ∈ Sℋ | |
| Assertion | shsidmi | ⊢ ( 𝐴 +ℋ 𝐴 ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shsidm.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | 1 1 | shseli | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 3 | shaddcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 +ℎ 𝑧 ) ∈ 𝐴 ) | |
| 4 | 1 3 | mp3an1 | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 +ℎ 𝑧 ) ∈ 𝐴 ) |
| 5 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( 𝑥 ∈ 𝐴 ↔ ( 𝑦 +ℎ 𝑧 ) ∈ 𝐴 ) ) | |
| 6 | 4 5 | syl5ibrcom | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) |
| 7 | 6 | rexlimivv | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) |
| 8 | 2 7 | sylbi | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 9 | 8 | ssriv | ⊢ ( 𝐴 +ℋ 𝐴 ) ⊆ 𝐴 |
| 10 | 1 1 | shsub1i | ⊢ 𝐴 ⊆ ( 𝐴 +ℋ 𝐴 ) |
| 11 | 9 10 | eqssi | ⊢ ( 𝐴 +ℋ 𝐴 ) = 𝐴 |