This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shslub.1 | |- A e. SH |
|
| shslub.2 | |- B e. SH |
||
| shslub.3 | |- C e. SH |
||
| Assertion | shslubi | |- ( ( A C_ C /\ B C_ C ) <-> ( A +H B ) C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shslub.1 | |- A e. SH |
|
| 2 | shslub.2 | |- B e. SH |
|
| 3 | shslub.3 | |- C e. SH |
|
| 4 | 1 3 2 | shlessi | |- ( A C_ C -> ( A +H B ) C_ ( C +H B ) ) |
| 5 | 3 2 | shscomi | |- ( C +H B ) = ( B +H C ) |
| 6 | 4 5 | sseqtrdi | |- ( A C_ C -> ( A +H B ) C_ ( B +H C ) ) |
| 7 | 2 3 3 | shlessi | |- ( B C_ C -> ( B +H C ) C_ ( C +H C ) ) |
| 8 | 3 | shsidmi | |- ( C +H C ) = C |
| 9 | 7 8 | sseqtrdi | |- ( B C_ C -> ( B +H C ) C_ C ) |
| 10 | 6 9 | sylan9ss | |- ( ( A C_ C /\ B C_ C ) -> ( A +H B ) C_ C ) |
| 11 | 1 2 | shsub1i | |- A C_ ( A +H B ) |
| 12 | sstr | |- ( ( A C_ ( A +H B ) /\ ( A +H B ) C_ C ) -> A C_ C ) |
|
| 13 | 11 12 | mpan | |- ( ( A +H B ) C_ C -> A C_ C ) |
| 14 | 2 1 | shsub2i | |- B C_ ( A +H B ) |
| 15 | sstr | |- ( ( B C_ ( A +H B ) /\ ( A +H B ) C_ C ) -> B C_ C ) |
|
| 16 | 14 15 | mpan | |- ( ( A +H B ) C_ C -> B C_ C ) |
| 17 | 13 16 | jca | |- ( ( A +H B ) C_ C -> ( A C_ C /\ B C_ C ) ) |
| 18 | 10 17 | impbii | |- ( ( A C_ C /\ B C_ C ) <-> ( A +H B ) C_ C ) |