This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a sequence shifted by A - B . (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftval2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 𝐶 ) ) = ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 4 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + 𝐶 ) ∈ ℂ ) | |
| 5 | 1 | shftval | ⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ ( 𝐴 + 𝐶 ) ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 𝐶 ) ) = ( 𝐹 ‘ ( ( 𝐴 + 𝐶 ) − ( 𝐴 − 𝐵 ) ) ) ) |
| 6 | 3 4 5 | 3imp3i2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 𝐶 ) ) = ( 𝐹 ‘ ( ( 𝐴 + 𝐶 ) − ( 𝐴 − 𝐵 ) ) ) ) |
| 7 | pnncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − ( 𝐴 − 𝐵 ) ) = ( 𝐶 + 𝐵 ) ) | |
| 8 | 7 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − ( 𝐴 − 𝐵 ) ) = ( 𝐶 + 𝐵 ) ) |
| 9 | addcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) | |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
| 11 | 8 10 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − ( 𝐴 − 𝐵 ) ) = ( 𝐵 + 𝐶 ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐹 ‘ ( ( 𝐴 + 𝐶 ) − ( 𝐴 − 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) ) |
| 13 | 6 12 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 𝐶 ) ) = ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) ) |