This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A definition of function value in terms of iota. (Contributed by Scott Fenton, 19-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffv3 | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) | |
| 2 | elimasng | ⊢ ( ( 𝐴 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) ) | |
| 3 | df-br | ⊢ ( 𝐴 𝐹 𝑥 ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) | |
| 4 | 2 3 | bitr4di | ⊢ ( ( 𝐴 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝐴 𝐹 𝑥 ) ) |
| 5 | 4 | elvd | ⊢ ( 𝐴 ∈ V → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝐴 𝐹 𝑥 ) ) |
| 6 | 5 | iotabidv | ⊢ ( 𝐴 ∈ V → ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) |
| 7 | 1 6 | eqtr4id | ⊢ ( 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) ) |
| 8 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 9 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 10 | 9 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
| 11 | 10 | imaeq2d | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 “ { 𝐴 } ) = ( 𝐹 “ ∅ ) ) |
| 12 | ima0 | ⊢ ( 𝐹 “ ∅ ) = ∅ | |
| 13 | 11 12 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 “ { 𝐴 } ) = ∅ ) |
| 14 | 13 | eleq2d | ⊢ ( ¬ 𝐴 ∈ V → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝑥 ∈ ∅ ) ) |
| 15 | 14 | iotabidv | ⊢ ( ¬ 𝐴 ∈ V → ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) = ( ℩ 𝑥 𝑥 ∈ ∅ ) ) |
| 16 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 17 | 16 | nex | ⊢ ¬ ∃ 𝑥 𝑥 ∈ ∅ |
| 18 | euex | ⊢ ( ∃! 𝑥 𝑥 ∈ ∅ → ∃ 𝑥 𝑥 ∈ ∅ ) | |
| 19 | 17 18 | mto | ⊢ ¬ ∃! 𝑥 𝑥 ∈ ∅ |
| 20 | iotanul | ⊢ ( ¬ ∃! 𝑥 𝑥 ∈ ∅ → ( ℩ 𝑥 𝑥 ∈ ∅ ) = ∅ ) | |
| 21 | 19 20 | ax-mp | ⊢ ( ℩ 𝑥 𝑥 ∈ ∅ ) = ∅ |
| 22 | 15 21 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ V → ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) = ∅ ) |
| 23 | 8 22 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) ) |
| 24 | 7 23 | pm2.61i | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) |