This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a fiber of the relation F . (Contributed by Mario Carneiro, 4-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftfib | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) “ { 𝐵 } ) = ( 𝐹 “ { ( 𝐵 − 𝐴 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | 1 | shftfval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
| 3 | 2 | breqd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐵 ( 𝐹 shift 𝐴 ) 𝑧 ↔ 𝐵 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑧 ) ) |
| 4 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) | |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 − 𝐴 ) = ( 𝐵 − 𝐴 ) ) | |
| 6 | 5 | breq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 − 𝐴 ) 𝐹 𝑦 ↔ ( 𝐵 − 𝐴 ) 𝐹 𝑦 ) ) |
| 7 | 4 6 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐵 − 𝐴 ) 𝐹 𝑦 ) ) ) |
| 8 | breq2 | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐵 − 𝐴 ) 𝐹 𝑦 ↔ ( 𝐵 − 𝐴 ) 𝐹 𝑧 ) ) | |
| 9 | 8 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐵 ∈ ℂ ∧ ( 𝐵 − 𝐴 ) 𝐹 𝑦 ) ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐵 − 𝐴 ) 𝐹 𝑧 ) ) ) |
| 10 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } | |
| 11 | 7 9 10 | brabg | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑧 ∈ V ) → ( 𝐵 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑧 ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐵 − 𝐴 ) 𝐹 𝑧 ) ) ) |
| 12 | 11 | elvd | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑧 ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐵 − 𝐴 ) 𝐹 𝑧 ) ) ) |
| 13 | 3 12 | sylan9bb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ( 𝐹 shift 𝐴 ) 𝑧 ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐵 − 𝐴 ) 𝐹 𝑧 ) ) ) |
| 14 | ibar | ⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 − 𝐴 ) 𝐹 𝑧 ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐵 − 𝐴 ) 𝐹 𝑧 ) ) ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐵 − 𝐴 ) 𝐹 𝑧 ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐵 − 𝐴 ) 𝐹 𝑧 ) ) ) |
| 16 | 13 15 | bitr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ( 𝐹 shift 𝐴 ) 𝑧 ↔ ( 𝐵 − 𝐴 ) 𝐹 𝑧 ) ) |
| 17 | 16 | abbidv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → { 𝑧 ∣ 𝐵 ( 𝐹 shift 𝐴 ) 𝑧 } = { 𝑧 ∣ ( 𝐵 − 𝐴 ) 𝐹 𝑧 } ) |
| 18 | imasng | ⊢ ( 𝐵 ∈ ℂ → ( ( 𝐹 shift 𝐴 ) “ { 𝐵 } ) = { 𝑧 ∣ 𝐵 ( 𝐹 shift 𝐴 ) 𝑧 } ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) “ { 𝐵 } ) = { 𝑧 ∣ 𝐵 ( 𝐹 shift 𝐴 ) 𝑧 } ) |
| 20 | ovex | ⊢ ( 𝐵 − 𝐴 ) ∈ V | |
| 21 | imasng | ⊢ ( ( 𝐵 − 𝐴 ) ∈ V → ( 𝐹 “ { ( 𝐵 − 𝐴 ) } ) = { 𝑧 ∣ ( 𝐵 − 𝐴 ) 𝐹 𝑧 } ) | |
| 22 | 20 21 | mp1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐹 “ { ( 𝐵 − 𝐴 ) } ) = { 𝑧 ∣ ( 𝐵 − 𝐴 ) 𝐹 𝑧 } ) |
| 23 | 17 19 22 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) “ { 𝐵 } ) = ( 𝐹 “ { ( 𝐵 − 𝐴 ) } ) ) |