This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of one set, either a singleton set or an empty set, is terminal. (Contributed by Zhi Wang, 18-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setcsnterm | ⊢ ( SetCat ‘ { { 𝐴 } } ) ∈ TermCat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | ⊢ ( ⊤ → ( SetCat ‘ { { 𝐴 } } ) = ( SetCat ‘ { { 𝐴 } } ) ) | |
| 2 | snex | ⊢ { { 𝐴 } } ∈ V | |
| 3 | 2 | a1i | ⊢ ( ⊤ → { { 𝐴 } } ∈ V ) |
| 4 | velsn | ⊢ ( 𝑥 ∈ { { 𝐴 } } ↔ 𝑥 = { 𝐴 } ) | |
| 5 | mosn | ⊢ ( 𝑥 = { 𝐴 } → ∃* 𝑝 𝑝 ∈ 𝑥 ) | |
| 6 | 4 5 | sylbi | ⊢ ( 𝑥 ∈ { { 𝐴 } } → ∃* 𝑝 𝑝 ∈ 𝑥 ) |
| 7 | 6 | rgen | ⊢ ∀ 𝑥 ∈ { { 𝐴 } } ∃* 𝑝 𝑝 ∈ 𝑥 |
| 8 | 7 | a1i | ⊢ ( ⊤ → ∀ 𝑥 ∈ { { 𝐴 } } ∃* 𝑝 𝑝 ∈ 𝑥 ) |
| 9 | 1 3 8 | setcthin | ⊢ ( ⊤ → ( SetCat ‘ { { 𝐴 } } ) ∈ ThinCat ) |
| 10 | 9 | mptru | ⊢ ( SetCat ‘ { { 𝐴 } } ) ∈ ThinCat |
| 11 | snex | ⊢ { 𝐴 } ∈ V | |
| 12 | 11 | ensn1 | ⊢ { { 𝐴 } } ≈ 1o |
| 13 | eqid | ⊢ ( SetCat ‘ { { 𝐴 } } ) = ( SetCat ‘ { { 𝐴 } } ) | |
| 14 | 13 3 | setcbas | ⊢ ( ⊤ → { { 𝐴 } } = ( Base ‘ ( SetCat ‘ { { 𝐴 } } ) ) ) |
| 15 | 14 | mptru | ⊢ { { 𝐴 } } = ( Base ‘ ( SetCat ‘ { { 𝐴 } } ) ) |
| 16 | 15 | istermc3 | ⊢ ( ( SetCat ‘ { { 𝐴 } } ) ∈ TermCat ↔ ( ( SetCat ‘ { { 𝐴 } } ) ∈ ThinCat ∧ { { 𝐴 } } ≈ 1o ) ) |
| 17 | 10 12 16 | mpbir2an | ⊢ ( SetCat ‘ { { 𝐴 } } ) ∈ TermCat |