This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of one set, either a singleton set or an empty set, is terminal. (Contributed by Zhi Wang, 18-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setcsnterm | |- ( SetCat ` { { A } } ) e. TermCat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | |- ( T. -> ( SetCat ` { { A } } ) = ( SetCat ` { { A } } ) ) |
|
| 2 | snex | |- { { A } } e. _V |
|
| 3 | 2 | a1i | |- ( T. -> { { A } } e. _V ) |
| 4 | velsn | |- ( x e. { { A } } <-> x = { A } ) |
|
| 5 | mosn | |- ( x = { A } -> E* p p e. x ) |
|
| 6 | 4 5 | sylbi | |- ( x e. { { A } } -> E* p p e. x ) |
| 7 | 6 | rgen | |- A. x e. { { A } } E* p p e. x |
| 8 | 7 | a1i | |- ( T. -> A. x e. { { A } } E* p p e. x ) |
| 9 | 1 3 8 | setcthin | |- ( T. -> ( SetCat ` { { A } } ) e. ThinCat ) |
| 10 | 9 | mptru | |- ( SetCat ` { { A } } ) e. ThinCat |
| 11 | snex | |- { A } e. _V |
|
| 12 | 11 | ensn1 | |- { { A } } ~~ 1o |
| 13 | eqid | |- ( SetCat ` { { A } } ) = ( SetCat ` { { A } } ) |
|
| 14 | 13 3 | setcbas | |- ( T. -> { { A } } = ( Base ` ( SetCat ` { { A } } ) ) ) |
| 15 | 14 | mptru | |- { { A } } = ( Base ` ( SetCat ` { { A } } ) ) |
| 16 | 15 | istermc3 | |- ( ( SetCat ` { { A } } ) e. TermCat <-> ( ( SetCat ` { { A } } ) e. ThinCat /\ { { A } } ~~ 1o ) ) |
| 17 | 10 12 16 | mpbir2an | |- ( SetCat ` { { A } } ) e. TermCat |