This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A section in the category of sets, written out. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcmon.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| setcmon.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| setcmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| setcmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| setcsect.n | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| Assertion | setcsect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcmon.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| 2 | setcmon.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | setcmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 4 | setcmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 5 | setcsect.n | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 8 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 10 | 1 | setccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 12 | 1 2 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
| 13 | 3 12 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 14 | 4 12 | eleqtrd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 15 | 6 7 8 9 5 11 13 14 | issect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 16 | 1 2 7 3 4 | elsetchom | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 17 | 1 2 7 4 3 | elsetchom | ⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ 𝐺 : 𝑌 ⟶ 𝑋 ) ) |
| 18 | 16 17 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) ) |
| 19 | 18 | anbi1d | ⊢ ( 𝜑 → ( ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 20 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → 𝑈 ∈ 𝑉 ) |
| 21 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → 𝑋 ∈ 𝑈 ) |
| 22 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → 𝑌 ∈ 𝑈 ) |
| 23 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 24 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → 𝐺 : 𝑌 ⟶ 𝑋 ) | |
| 25 | 1 20 8 21 22 21 23 24 | setcco | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 𝐺 ∘ 𝐹 ) ) |
| 26 | 1 9 2 3 | setcid | ⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = ( I ↾ 𝑋 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = ( I ↾ 𝑋 ) ) |
| 28 | 25 27 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ↔ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) |
| 29 | 28 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) ) |
| 30 | 19 29 | bitrd | ⊢ ( 𝜑 → ( ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) ) |
| 31 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) | |
| 32 | df-3an | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) | |
| 33 | 30 31 32 | 3bitr4g | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) ) |
| 34 | 15 33 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) ) |