This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A section in the category of sets, written out. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcmon.c | |- C = ( SetCat ` U ) |
|
| setcmon.u | |- ( ph -> U e. V ) |
||
| setcmon.x | |- ( ph -> X e. U ) |
||
| setcmon.y | |- ( ph -> Y e. U ) |
||
| setcsect.n | |- S = ( Sect ` C ) |
||
| Assertion | setcsect | |- ( ph -> ( F ( X S Y ) G <-> ( F : X --> Y /\ G : Y --> X /\ ( G o. F ) = ( _I |` X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcmon.c | |- C = ( SetCat ` U ) |
|
| 2 | setcmon.u | |- ( ph -> U e. V ) |
|
| 3 | setcmon.x | |- ( ph -> X e. U ) |
|
| 4 | setcmon.y | |- ( ph -> Y e. U ) |
|
| 5 | setcsect.n | |- S = ( Sect ` C ) |
|
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 8 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 9 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 10 | 1 | setccat | |- ( U e. V -> C e. Cat ) |
| 11 | 2 10 | syl | |- ( ph -> C e. Cat ) |
| 12 | 1 2 | setcbas | |- ( ph -> U = ( Base ` C ) ) |
| 13 | 3 12 | eleqtrd | |- ( ph -> X e. ( Base ` C ) ) |
| 14 | 4 12 | eleqtrd | |- ( ph -> Y e. ( Base ` C ) ) |
| 15 | 6 7 8 9 5 11 13 14 | issect | |- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
| 16 | 1 2 7 3 4 | elsetchom | |- ( ph -> ( F e. ( X ( Hom ` C ) Y ) <-> F : X --> Y ) ) |
| 17 | 1 2 7 4 3 | elsetchom | |- ( ph -> ( G e. ( Y ( Hom ` C ) X ) <-> G : Y --> X ) ) |
| 18 | 16 17 | anbi12d | |- ( ph -> ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) <-> ( F : X --> Y /\ G : Y --> X ) ) ) |
| 19 | 18 | anbi1d | |- ( ph -> ( ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F : X --> Y /\ G : Y --> X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
| 20 | 2 | adantr | |- ( ( ph /\ ( F : X --> Y /\ G : Y --> X ) ) -> U e. V ) |
| 21 | 3 | adantr | |- ( ( ph /\ ( F : X --> Y /\ G : Y --> X ) ) -> X e. U ) |
| 22 | 4 | adantr | |- ( ( ph /\ ( F : X --> Y /\ G : Y --> X ) ) -> Y e. U ) |
| 23 | simprl | |- ( ( ph /\ ( F : X --> Y /\ G : Y --> X ) ) -> F : X --> Y ) |
|
| 24 | simprr | |- ( ( ph /\ ( F : X --> Y /\ G : Y --> X ) ) -> G : Y --> X ) |
|
| 25 | 1 20 8 21 22 21 23 24 | setcco | |- ( ( ph /\ ( F : X --> Y /\ G : Y --> X ) ) -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( G o. F ) ) |
| 26 | 1 9 2 3 | setcid | |- ( ph -> ( ( Id ` C ) ` X ) = ( _I |` X ) ) |
| 27 | 26 | adantr | |- ( ( ph /\ ( F : X --> Y /\ G : Y --> X ) ) -> ( ( Id ` C ) ` X ) = ( _I |` X ) ) |
| 28 | 25 27 | eqeq12d | |- ( ( ph /\ ( F : X --> Y /\ G : Y --> X ) ) -> ( ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) <-> ( G o. F ) = ( _I |` X ) ) ) |
| 29 | 28 | pm5.32da | |- ( ph -> ( ( ( F : X --> Y /\ G : Y --> X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F : X --> Y /\ G : Y --> X ) /\ ( G o. F ) = ( _I |` X ) ) ) ) |
| 30 | 19 29 | bitrd | |- ( ph -> ( ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F : X --> Y /\ G : Y --> X ) /\ ( G o. F ) = ( _I |` X ) ) ) ) |
| 31 | df-3an | |- ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
|
| 32 | df-3an | |- ( ( F : X --> Y /\ G : Y --> X /\ ( G o. F ) = ( _I |` X ) ) <-> ( ( F : X --> Y /\ G : Y --> X ) /\ ( G o. F ) = ( _I |` X ) ) ) |
|
| 33 | 30 31 32 | 3bitr4g | |- ( ph -> ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( F : X --> Y /\ G : Y --> X /\ ( G o. F ) = ( _I |` X ) ) ) ) |
| 34 | 15 33 | bitrd | |- ( ph -> ( F ( X S Y ) G <-> ( F : X --> Y /\ G : Y --> X /\ ( G o. F ) = ( _I |` X ) ) ) ) |