This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism in the category of sets is a bijection. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcmon.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| setcmon.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| setcmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| setcmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| setciso.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| Assertion | setciso | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcmon.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| 2 | setcmon.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | setcmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 4 | setcmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 5 | setciso.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 8 | 1 | setccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 | 1 2 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
| 11 | 3 10 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 12 | 4 10 | eleqtrd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 13 | 6 7 9 11 12 5 | isoval | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
| 14 | 13 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
| 15 | 6 7 9 11 12 | invfun | ⊢ ( 𝜑 → Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
| 16 | funfvbrb | ⊢ ( Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) |
| 18 | 1 2 3 4 7 | setcinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ↔ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) = ◡ 𝐹 ) ) ) |
| 19 | simpl | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) = ◡ 𝐹 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 20 | 18 19 | biimtrdi | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) |
| 21 | 17 20 | sylbid | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) |
| 22 | eqid | ⊢ ◡ 𝐹 = ◡ 𝐹 | |
| 23 | 1 2 3 4 7 | setcinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 ↔ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ◡ 𝐹 = ◡ 𝐹 ) ) ) |
| 24 | funrel | ⊢ ( Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) | |
| 25 | 15 24 | syl | ⊢ ( 𝜑 → Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
| 26 | releldm | ⊢ ( ( Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 ) → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) | |
| 27 | 26 | ex | ⊢ ( Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
| 28 | 25 27 | syl | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
| 29 | 23 28 | sylbird | ⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ◡ 𝐹 = ◡ 𝐹 ) → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
| 30 | 22 29 | mpan2i | ⊢ ( 𝜑 → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
| 31 | 21 30 | impbid | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) |
| 32 | 14 31 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) |