This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism in the category of sets is a bijection. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcmon.c | |- C = ( SetCat ` U ) |
|
| setcmon.u | |- ( ph -> U e. V ) |
||
| setcmon.x | |- ( ph -> X e. U ) |
||
| setcmon.y | |- ( ph -> Y e. U ) |
||
| setciso.n | |- I = ( Iso ` C ) |
||
| Assertion | setciso | |- ( ph -> ( F e. ( X I Y ) <-> F : X -1-1-onto-> Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcmon.c | |- C = ( SetCat ` U ) |
|
| 2 | setcmon.u | |- ( ph -> U e. V ) |
|
| 3 | setcmon.x | |- ( ph -> X e. U ) |
|
| 4 | setcmon.y | |- ( ph -> Y e. U ) |
|
| 5 | setciso.n | |- I = ( Iso ` C ) |
|
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | eqid | |- ( Inv ` C ) = ( Inv ` C ) |
|
| 8 | 1 | setccat | |- ( U e. V -> C e. Cat ) |
| 9 | 2 8 | syl | |- ( ph -> C e. Cat ) |
| 10 | 1 2 | setcbas | |- ( ph -> U = ( Base ` C ) ) |
| 11 | 3 10 | eleqtrd | |- ( ph -> X e. ( Base ` C ) ) |
| 12 | 4 10 | eleqtrd | |- ( ph -> Y e. ( Base ` C ) ) |
| 13 | 6 7 9 11 12 5 | isoval | |- ( ph -> ( X I Y ) = dom ( X ( Inv ` C ) Y ) ) |
| 14 | 13 | eleq2d | |- ( ph -> ( F e. ( X I Y ) <-> F e. dom ( X ( Inv ` C ) Y ) ) ) |
| 15 | 6 7 9 11 12 | invfun | |- ( ph -> Fun ( X ( Inv ` C ) Y ) ) |
| 16 | funfvbrb | |- ( Fun ( X ( Inv ` C ) Y ) -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
|
| 17 | 15 16 | syl | |- ( ph -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
| 18 | 1 2 3 4 7 | setcinv | |- ( ph -> ( F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) <-> ( F : X -1-1-onto-> Y /\ ( ( X ( Inv ` C ) Y ) ` F ) = `' F ) ) ) |
| 19 | simpl | |- ( ( F : X -1-1-onto-> Y /\ ( ( X ( Inv ` C ) Y ) ` F ) = `' F ) -> F : X -1-1-onto-> Y ) |
|
| 20 | 18 19 | biimtrdi | |- ( ph -> ( F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) -> F : X -1-1-onto-> Y ) ) |
| 21 | 17 20 | sylbid | |- ( ph -> ( F e. dom ( X ( Inv ` C ) Y ) -> F : X -1-1-onto-> Y ) ) |
| 22 | eqid | |- `' F = `' F |
|
| 23 | 1 2 3 4 7 | setcinv | |- ( ph -> ( F ( X ( Inv ` C ) Y ) `' F <-> ( F : X -1-1-onto-> Y /\ `' F = `' F ) ) ) |
| 24 | funrel | |- ( Fun ( X ( Inv ` C ) Y ) -> Rel ( X ( Inv ` C ) Y ) ) |
|
| 25 | 15 24 | syl | |- ( ph -> Rel ( X ( Inv ` C ) Y ) ) |
| 26 | releldm | |- ( ( Rel ( X ( Inv ` C ) Y ) /\ F ( X ( Inv ` C ) Y ) `' F ) -> F e. dom ( X ( Inv ` C ) Y ) ) |
|
| 27 | 26 | ex | |- ( Rel ( X ( Inv ` C ) Y ) -> ( F ( X ( Inv ` C ) Y ) `' F -> F e. dom ( X ( Inv ` C ) Y ) ) ) |
| 28 | 25 27 | syl | |- ( ph -> ( F ( X ( Inv ` C ) Y ) `' F -> F e. dom ( X ( Inv ` C ) Y ) ) ) |
| 29 | 23 28 | sylbird | |- ( ph -> ( ( F : X -1-1-onto-> Y /\ `' F = `' F ) -> F e. dom ( X ( Inv ` C ) Y ) ) ) |
| 30 | 22 29 | mpan2i | |- ( ph -> ( F : X -1-1-onto-> Y -> F e. dom ( X ( Inv ` C ) Y ) ) ) |
| 31 | 21 30 | impbid | |- ( ph -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F : X -1-1-onto-> Y ) ) |
| 32 | 14 31 | bitrd | |- ( ph -> ( F e. ( X I Y ) <-> F : X -1-1-onto-> Y ) ) |