This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | serge0.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| serge0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| serge0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | serge0 | ⊢ ( 𝜑 → 0 ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | serge0.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | serge0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 3 | serge0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 4 | breq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( 0 ≤ 𝑥 ↔ 0 ≤ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 5 | 4 2 3 | elrabd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) |
| 6 | breq2 | ⊢ ( 𝑥 = 𝑘 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑘 ) ) | |
| 7 | 6 | elrab | ⊢ ( 𝑘 ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ↔ ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ) |
| 8 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑦 ) ) | |
| 9 | 8 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) |
| 10 | breq2 | ⊢ ( 𝑥 = ( 𝑘 + 𝑦 ) → ( 0 ≤ 𝑥 ↔ 0 ≤ ( 𝑘 + 𝑦 ) ) ) | |
| 11 | readdcl | ⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑘 + 𝑦 ) ∈ ℝ ) | |
| 12 | 11 | ad2ant2r | ⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) → ( 𝑘 + 𝑦 ) ∈ ℝ ) |
| 13 | addge0 | ⊢ ( ( ( 𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 0 ≤ 𝑘 ∧ 0 ≤ 𝑦 ) ) → 0 ≤ ( 𝑘 + 𝑦 ) ) | |
| 14 | 13 | an4s | ⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) → 0 ≤ ( 𝑘 + 𝑦 ) ) |
| 15 | 10 12 14 | elrabd | ⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) → ( 𝑘 + 𝑦 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) |
| 16 | 7 9 15 | syl2anb | ⊢ ( ( 𝑘 ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ∧ 𝑦 ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) → ( 𝑘 + 𝑦 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ∧ 𝑦 ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) ) → ( 𝑘 + 𝑦 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) |
| 18 | 1 5 17 | seqcl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) |
| 19 | breq2 | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) → ( 0 ≤ 𝑥 ↔ 0 ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) | |
| 20 | 19 | elrab | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 21 | 20 | simprbi | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } → 0 ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 22 | 18 21 | syl | ⊢ ( 𝜑 → 0 ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |