This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | serge0.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| serge0.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) |
||
| serle.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. RR ) |
||
| serle.4 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) <_ ( G ` k ) ) |
||
| Assertion | serle | |- ( ph -> ( seq M ( + , F ) ` N ) <_ ( seq M ( + , G ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | serge0.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | serge0.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) |
|
| 3 | serle.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. RR ) |
|
| 4 | serle.4 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) <_ ( G ` k ) ) |
|
| 5 | fveq2 | |- ( x = k -> ( G ` x ) = ( G ` k ) ) |
|
| 6 | fveq2 | |- ( x = k -> ( F ` x ) = ( F ` k ) ) |
|
| 7 | 5 6 | oveq12d | |- ( x = k -> ( ( G ` x ) - ( F ` x ) ) = ( ( G ` k ) - ( F ` k ) ) ) |
| 8 | eqid | |- ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) = ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) |
|
| 9 | ovex | |- ( ( G ` k ) - ( F ` k ) ) e. _V |
|
| 10 | 7 8 9 | fvmpt | |- ( k e. _V -> ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) ) |
| 11 | 10 | elv | |- ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) |
| 12 | 3 2 | resubcld | |- ( ( ph /\ k e. ( M ... N ) ) -> ( ( G ` k ) - ( F ` k ) ) e. RR ) |
| 13 | 11 12 | eqeltrid | |- ( ( ph /\ k e. ( M ... N ) ) -> ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) e. RR ) |
| 14 | 3 2 | subge0d | |- ( ( ph /\ k e. ( M ... N ) ) -> ( 0 <_ ( ( G ` k ) - ( F ` k ) ) <-> ( F ` k ) <_ ( G ` k ) ) ) |
| 15 | 4 14 | mpbird | |- ( ( ph /\ k e. ( M ... N ) ) -> 0 <_ ( ( G ` k ) - ( F ` k ) ) ) |
| 16 | 15 11 | breqtrrdi | |- ( ( ph /\ k e. ( M ... N ) ) -> 0 <_ ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) ) |
| 17 | 1 13 16 | serge0 | |- ( ph -> 0 <_ ( seq M ( + , ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ) ` N ) ) |
| 18 | 3 | recnd | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) |
| 19 | 2 | recnd | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
| 20 | 11 | a1i | |- ( ( ph /\ k e. ( M ... N ) ) -> ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) ) |
| 21 | 1 18 19 20 | sersub | |- ( ph -> ( seq M ( + , ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ) ` N ) = ( ( seq M ( + , G ) ` N ) - ( seq M ( + , F ) ` N ) ) ) |
| 22 | 17 21 | breqtrd | |- ( ph -> 0 <_ ( ( seq M ( + , G ) ` N ) - ( seq M ( + , F ) ` N ) ) ) |
| 23 | readdcl | |- ( ( k e. RR /\ x e. RR ) -> ( k + x ) e. RR ) |
|
| 24 | 23 | adantl | |- ( ( ph /\ ( k e. RR /\ x e. RR ) ) -> ( k + x ) e. RR ) |
| 25 | 1 3 24 | seqcl | |- ( ph -> ( seq M ( + , G ) ` N ) e. RR ) |
| 26 | 1 2 24 | seqcl | |- ( ph -> ( seq M ( + , F ) ` N ) e. RR ) |
| 27 | 25 26 | subge0d | |- ( ph -> ( 0 <_ ( ( seq M ( + , G ) ` N ) - ( seq M ( + , F ) ` N ) ) <-> ( seq M ( + , F ) ` N ) <_ ( seq M ( + , G ) ` N ) ) ) |
| 28 | 22 27 | mpbid | |- ( ph -> ( seq M ( + , F ) ` N ) <_ ( seq M ( + , G ) ` N ) ) |