This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the sequence builder function. (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqval.1 | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) | |
| Assertion | seqval | ⊢ seq 𝑀 ( + , 𝐹 ) = ran 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqval.1 | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) | |
| 2 | df-ima | ⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) | |
| 3 | df-seq | ⊢ seq 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) | |
| 4 | eqid | ⊢ V = V | |
| 5 | fvoveq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ ( 𝑧 + 1 ) ) = ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) | |
| 6 | 5 | oveq2d | ⊢ ( 𝑧 = 𝑥 → ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) = ( 𝑤 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) |
| 7 | oveq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) = ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) | |
| 8 | eqid | ⊢ ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) | |
| 9 | ovex | ⊢ ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ∈ V | |
| 10 | 6 7 8 9 | ovmpo | ⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) = ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) |
| 11 | 10 | el2v | ⊢ ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) = ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) |
| 12 | 11 | opeq2i | ⊢ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 = 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 |
| 13 | 4 4 12 | mpoeq123i | ⊢ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
| 14 | rdgeq1 | ⊢ ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) → rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ) | |
| 15 | 13 14 | ax-mp | ⊢ rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) |
| 16 | 15 | reseq1i | ⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) |
| 17 | 1 16 | eqtri | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) |
| 18 | 17 | rneqi | ⊢ ran 𝑅 = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) |
| 19 | 2 3 18 | 3eqtr4i | ⊢ seq 𝑀 ( + , 𝐹 ) = ran 𝑅 |