This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of the recursive sequence builder (special case of seqf2 ). (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| seqf.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| seqf.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | ||
| seqf.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | ||
| Assertion | seqf | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | seqf.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | seqf.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | |
| 4 | seqf.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 5 | fveq2 | ⊢ ( 𝑥 = 𝑀 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝐹 ‘ 𝑀 ) ∈ 𝑆 ) ) |
| 7 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 8 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 | 9 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 11 | 6 7 10 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ 𝑆 ) |
| 12 | peano2uzr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 13 | 2 12 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 14 | 13 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ 𝑍 ) |
| 15 | 14 3 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 16 | 11 4 1 2 15 | seqf2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ 𝑆 ) |