This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: T is an associative algebra. For simplicity, I stands for ( I \ J ) and we have J e. W instead of J C_ I . TODO-SN: In practice, this "simplification" makes the lemmas harder to use. (Contributed by SN, 15-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | selvcllem1.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝑅 ) | |
| selvcllem1.t | ⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) | ||
| selvcllem1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| selvcllem1.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | ||
| selvcllem1.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| Assertion | selvcllem1 | ⊢ ( 𝜑 → 𝑇 ∈ AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | selvcllem1.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | selvcllem1.t | ⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) | |
| 3 | selvcllem1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 4 | selvcllem1.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | |
| 5 | selvcllem1.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | 1 | mplcrng | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ CRing ) |
| 7 | 3 5 6 | syl2anc | ⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
| 8 | 2 | mplassa | ⊢ ( ( 𝐽 ∈ 𝑊 ∧ 𝑈 ∈ CRing ) → 𝑇 ∈ AssAlg ) |
| 9 | 4 7 8 | syl2anc | ⊢ ( 𝜑 → 𝑇 ∈ AssAlg ) |