This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the section operation. (Contributed by Mario Carneiro, 2-Jan-2017) Removed redundant hypotheses. (Revised by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| issect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| issect.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| issect.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| issect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| issect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| Assertion | sectffval | ⊢ ( 𝜑 → 𝑆 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | issect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | issect.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | issect.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 5 | issect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 6 | issect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 7 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 9 | fvexd | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) ∈ V ) | |
| 10 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐻 ) |
| 12 | simpr | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ℎ = 𝐻 ) | |
| 13 | 12 | oveqd | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 14 | 13 | eleq2d | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
| 15 | 12 | oveqd | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑦 ℎ 𝑥 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 16 | 15 | eleq2d | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ↔ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ) |
| 17 | 14 16 | anbi12d | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ↔ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ) ) |
| 18 | simpl | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → 𝑐 = 𝐶 ) | |
| 19 | 18 | fveq2d | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) = ( comp ‘ 𝐶 ) ) |
| 20 | 19 3 | eqtr4di | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) = · ) |
| 21 | 20 | oveqd | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) ) |
| 22 | 21 | oveqd | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) ) |
| 23 | 18 | fveq2d | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( Id ‘ 𝑐 ) = ( Id ‘ 𝐶 ) ) |
| 24 | 23 4 | eqtr4di | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( Id ‘ 𝑐 ) = 1 ) |
| 25 | 24 | fveq1d | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) = ( 1 ‘ 𝑥 ) ) |
| 26 | 22 25 | eqeq12d | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) ) |
| 27 | 17 26 | anbi12d | ⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) ) ) |
| 28 | 9 11 27 | sbcied2 | ⊢ ( 𝑐 = 𝐶 → ( [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) ) ) |
| 29 | 28 | opabbidv | ⊢ ( 𝑐 = 𝐶 → { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) |
| 30 | 8 8 29 | mpoeq123dv | ⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |
| 31 | df-sect | ⊢ Sect = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) ) | |
| 32 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 33 | 32 32 | mpoex | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ∈ V |
| 34 | 30 31 33 | fvmpt | ⊢ ( 𝐶 ∈ Cat → ( Sect ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |
| 35 | 6 34 | syl | ⊢ ( 𝜑 → ( Sect ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |
| 36 | 5 35 | eqtrid | ⊢ ( 𝜑 → 𝑆 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |