This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the section relation. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issect.b | |- B = ( Base ` C ) |
|
| issect.h | |- H = ( Hom ` C ) |
||
| issect.o | |- .x. = ( comp ` C ) |
||
| issect.i | |- .1. = ( Id ` C ) |
||
| issect.s | |- S = ( Sect ` C ) |
||
| issect.c | |- ( ph -> C e. Cat ) |
||
| issect.x | |- ( ph -> X e. B ) |
||
| issect.y | |- ( ph -> Y e. B ) |
||
| Assertion | sectfval | |- ( ph -> ( X S Y ) = { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issect.b | |- B = ( Base ` C ) |
|
| 2 | issect.h | |- H = ( Hom ` C ) |
|
| 3 | issect.o | |- .x. = ( comp ` C ) |
|
| 4 | issect.i | |- .1. = ( Id ` C ) |
|
| 5 | issect.s | |- S = ( Sect ` C ) |
|
| 6 | issect.c | |- ( ph -> C e. Cat ) |
|
| 7 | issect.x | |- ( ph -> X e. B ) |
|
| 8 | issect.y | |- ( ph -> Y e. B ) |
|
| 9 | 1 2 3 4 5 6 | sectffval | |- ( ph -> S = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |
| 10 | simprl | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
|
| 11 | simprr | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
|
| 12 | 10 11 | oveq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x H y ) = ( X H Y ) ) |
| 13 | 12 | eleq2d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( f e. ( x H y ) <-> f e. ( X H Y ) ) ) |
| 14 | 11 10 | oveq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( y H x ) = ( Y H X ) ) |
| 15 | 14 | eleq2d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( g e. ( y H x ) <-> g e. ( Y H X ) ) ) |
| 16 | 13 15 | anbi12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( f e. ( x H y ) /\ g e. ( y H x ) ) <-> ( f e. ( X H Y ) /\ g e. ( Y H X ) ) ) ) |
| 17 | 10 11 | opeq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> <. x , y >. = <. X , Y >. ) |
| 18 | 17 10 | oveq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( <. x , y >. .x. x ) = ( <. X , Y >. .x. X ) ) |
| 19 | 18 | oveqd | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( g ( <. x , y >. .x. x ) f ) = ( g ( <. X , Y >. .x. X ) f ) ) |
| 20 | 10 | fveq2d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( .1. ` x ) = ( .1. ` X ) ) |
| 21 | 19 20 | eqeq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) <-> ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) ) |
| 22 | 16 21 | anbi12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) <-> ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) ) ) |
| 23 | 22 | opabbidv | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } = { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } ) |
| 24 | ovex | |- ( X H Y ) e. _V |
|
| 25 | ovex | |- ( Y H X ) e. _V |
|
| 26 | 24 25 | xpex | |- ( ( X H Y ) X. ( Y H X ) ) e. _V |
| 27 | opabssxp | |- { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } C_ ( ( X H Y ) X. ( Y H X ) ) |
|
| 28 | 26 27 | ssexi | |- { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } e. _V |
| 29 | 28 | a1i | |- ( ph -> { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } e. _V ) |
| 30 | 9 23 7 8 29 | ovmpod | |- ( ph -> ( X S Y ) = { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } ) |